The disjoint arcs property for homogeneous curves
Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 159-169.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The local structure of homogeneous continua (curves) is studied. Components of open subsets of each homogeneous curve which is not a solenoid have the disjoint arcs property. If the curve is aposyndetic, then the components are nonplanar. A new characterization of solenoids is formulated: a continuum is a solenoid if and only if it is homogeneous, contains no terminal nontrivial subcontinua and small subcontinua are not ∞-ods.
DOI : 10.4064/fm-146-2-159-169
Keywords: homogeneous continuum, aposyndetic curve, solenoid, disjoint arcs property, Menger universal curve

Paweł Krupski 1

1
@article{10_4064_fm_146_2_159_169,
     author = {Pawe{\l} Krupski},
     title = {The disjoint arcs property for homogeneous curves},
     journal = {Fundamenta Mathematicae},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {146},
     number = {2},
     year = {1994},
     doi = {10.4064/fm-146-2-159-169},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-159-169/}
}
TY  - JOUR
AU  - Paweł Krupski
TI  - The disjoint arcs property for homogeneous curves
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 159
EP  - 169
VL  - 146
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-159-169/
DO  - 10.4064/fm-146-2-159-169
LA  - en
ID  - 10_4064_fm_146_2_159_169
ER  - 
%0 Journal Article
%A Paweł Krupski
%T The disjoint arcs property for homogeneous curves
%J Fundamenta Mathematicae
%D 1994
%P 159-169
%V 146
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-159-169/
%R 10.4064/fm-146-2-159-169
%G en
%F 10_4064_fm_146_2_159_169
Paweł Krupski. The disjoint arcs property for homogeneous curves. Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 159-169. doi : 10.4064/fm-146-2-159-169. http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-159-169/

Cité par Sources :