Rational Hopf G-spaces with two nontrivial homotopy group systems
Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 101-106
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let G be a finite group. We prove that every rational G-connected Hopf G-space with two nontrivial homotopy group systems is G-homotopy equivalent to an infinite loop G-space.
@article{10_4064_fm_146_2_101_106,
author = {Ryszard Doman},
title = {Rational {Hopf} {G-spaces} with two nontrivial homotopy group systems},
journal = {Fundamenta Mathematicae},
pages = {101--106},
publisher = {mathdoc},
volume = {146},
number = {2},
year = {1994},
doi = {10.4064/fm-146-2-101-106},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-101-106/}
}
TY - JOUR AU - Ryszard Doman TI - Rational Hopf G-spaces with two nontrivial homotopy group systems JO - Fundamenta Mathematicae PY - 1994 SP - 101 EP - 106 VL - 146 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-101-106/ DO - 10.4064/fm-146-2-101-106 LA - en ID - 10_4064_fm_146_2_101_106 ER -
%0 Journal Article %A Ryszard Doman %T Rational Hopf G-spaces with two nontrivial homotopy group systems %J Fundamenta Mathematicae %D 1994 %P 101-106 %V 146 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-101-106/ %R 10.4064/fm-146-2-101-106 %G en %F 10_4064_fm_146_2_101_106
Ryszard Doman. Rational Hopf G-spaces with two nontrivial homotopy group systems. Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 101-106. doi: 10.4064/fm-146-2-101-106
Cité par Sources :