Rational Hopf G-spaces with two nontrivial homotopy group systems
Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 101-106.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let G be a finite group. We prove that every rational G-connected Hopf G-space with two nontrivial homotopy group systems is G-homotopy equivalent to an infinite loop G-space.
DOI : 10.4064/fm-146-2-101-106

Ryszard Doman 1

1
@article{10_4064_fm_146_2_101_106,
     author = {Ryszard Doman},
     title = {Rational {Hopf} {G-spaces} with two nontrivial homotopy group systems},
     journal = {Fundamenta Mathematicae},
     pages = {101--106},
     publisher = {mathdoc},
     volume = {146},
     number = {2},
     year = {1994},
     doi = {10.4064/fm-146-2-101-106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-101-106/}
}
TY  - JOUR
AU  - Ryszard Doman
TI  - Rational Hopf G-spaces with two nontrivial homotopy group systems
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 101
EP  - 106
VL  - 146
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-101-106/
DO  - 10.4064/fm-146-2-101-106
LA  - en
ID  - 10_4064_fm_146_2_101_106
ER  - 
%0 Journal Article
%A Ryszard Doman
%T Rational Hopf G-spaces with two nontrivial homotopy group systems
%J Fundamenta Mathematicae
%D 1994
%P 101-106
%V 146
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-101-106/
%R 10.4064/fm-146-2-101-106
%G en
%F 10_4064_fm_146_2_101_106
Ryszard Doman. Rational Hopf G-spaces with two nontrivial homotopy group systems. Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 101-106. doi : 10.4064/fm-146-2-101-106. http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-101-106/

Cité par Sources :