A theory of non-absolutely convergent integrals in Rn with singularities on a regular boundary
Fundamenta Mathematicae, Tome 146 (1994) no. 1, pp. 69-84.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Specializing a recently developed axiomatic theory of non-absolutely convergent integrals in $ℝ^n$, we are led to an integration process over quite general sets $A ⊆ q ℝ^n$ with a regular boundary. The integral enjoys all the usual properties and yields the divergence theorem for vector-valued functions with singularities in a most general form.
DOI : 10.4064/fm-146-1-69-84

W. Jurkat 1 ; D. Nonnenmacher 1

1
@article{10_4064_fm_146_1_69_84,
     author = {W. Jurkat and D. Nonnenmacher},
     title = {A theory of non-absolutely convergent integrals in {Rn} with singularities on a regular boundary},
     journal = {Fundamenta Mathematicae},
     pages = {69--84},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {1994},
     doi = {10.4064/fm-146-1-69-84},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-1-69-84/}
}
TY  - JOUR
AU  - W. Jurkat
AU  - D. Nonnenmacher
TI  - A theory of non-absolutely convergent integrals in Rn with singularities on a regular boundary
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 69
EP  - 84
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-1-69-84/
DO  - 10.4064/fm-146-1-69-84
LA  - en
ID  - 10_4064_fm_146_1_69_84
ER  - 
%0 Journal Article
%A W. Jurkat
%A D. Nonnenmacher
%T A theory of non-absolutely convergent integrals in Rn with singularities on a regular boundary
%J Fundamenta Mathematicae
%D 1994
%P 69-84
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-1-69-84/
%R 10.4064/fm-146-1-69-84
%G en
%F 10_4064_fm_146_1_69_84
W. Jurkat; D. Nonnenmacher. A theory of non-absolutely convergent integrals in Rn with singularities on a regular boundary. Fundamenta Mathematicae, Tome 146 (1994) no. 1, pp. 69-84. doi : 10.4064/fm-146-1-69-84. http://geodesic.mathdoc.fr/articles/10.4064/fm-146-1-69-84/

Cité par Sources :