Classical-type characterizations of non-metrizable ${\rm ANE}(n)$-spaces
Fundamenta Mathematicae, Tome 145 (1994) no. 3, pp. 243-259
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The Kuratowski-Dugundji theorem that a metrizable space is an absolute (neighborhood) extensor in dimension n iff it is $LC^{n-1} \ C^{n-1}$ (resp., $LC^{n-1}$) is extended to a class of non-metrizable absolute (neighborhood) extensors in dimension $n$. On this base, several facts concerning metrizable extensors are established for non-metrizable ones.
Keywords:
absolute (neighborhood) extensor in dimension n, n-regular base, n-regular extension operator
Affiliations des auteurs :
Valentin Gutev 1 ; Vesko Valov 1
@article{10_4064_fm_145_3_243_259,
author = {Valentin Gutev and Vesko Valov},
title = {Classical-type characterizations of non-metrizable ${\rm ANE}(n)$-spaces},
journal = {Fundamenta Mathematicae},
pages = {243--259},
year = {1994},
volume = {145},
number = {3},
doi = {10.4064/fm-145-3-243-259},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-3-243-259/}
}
TY - JOUR
AU - Valentin Gutev
AU - Vesko Valov
TI - Classical-type characterizations of non-metrizable ${\rm ANE}(n)$-spaces
JO - Fundamenta Mathematicae
PY - 1994
SP - 243
EP - 259
VL - 145
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-3-243-259/
DO - 10.4064/fm-145-3-243-259
LA - en
ID - 10_4064_fm_145_3_243_259
ER -
%0 Journal Article
%A Valentin Gutev
%A Vesko Valov
%T Classical-type characterizations of non-metrizable ${\rm ANE}(n)$-spaces
%J Fundamenta Mathematicae
%D 1994
%P 243-259
%V 145
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-3-243-259/
%R 10.4064/fm-145-3-243-259
%G en
%F 10_4064_fm_145_3_243_259
Valentin Gutev; Vesko Valov. Classical-type characterizations of non-metrizable ${\rm ANE}(n)$-spaces. Fundamenta Mathematicae, Tome 145 (1994) no. 3, pp. 243-259. doi: 10.4064/fm-145-3-243-259
Cité par Sources :