Classical-type characterizations of non-metrizable ${\rm ANE}(n)$-spaces
Fundamenta Mathematicae, Tome 145 (1994) no. 3, pp. 243-259.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Kuratowski-Dugundji theorem that a metrizable space is an absolute (neighborhood) extensor in dimension n iff it is $LC^{n-1} \ C^{n-1}$ (resp., $LC^{n-1}$) is extended to a class of non-metrizable absolute (neighborhood) extensors in dimension $n$. On this base, several facts concerning metrizable extensors are established for non-metrizable ones.
DOI : 10.4064/fm-145-3-243-259
Keywords: absolute (neighborhood) extensor in dimension n, n-regular base, n-regular extension operator

Valentin Gutev 1 ; Vesko Valov 1

1
@article{10_4064_fm_145_3_243_259,
     author = {Valentin Gutev and Vesko Valov},
     title = {Classical-type characterizations of non-metrizable ${\rm ANE}(n)$-spaces},
     journal = {Fundamenta Mathematicae},
     pages = {243--259},
     publisher = {mathdoc},
     volume = {145},
     number = {3},
     year = {1994},
     doi = {10.4064/fm-145-3-243-259},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-3-243-259/}
}
TY  - JOUR
AU  - Valentin Gutev
AU  - Vesko Valov
TI  - Classical-type characterizations of non-metrizable ${\rm ANE}(n)$-spaces
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 243
EP  - 259
VL  - 145
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-3-243-259/
DO  - 10.4064/fm-145-3-243-259
LA  - en
ID  - 10_4064_fm_145_3_243_259
ER  - 
%0 Journal Article
%A Valentin Gutev
%A Vesko Valov
%T Classical-type characterizations of non-metrizable ${\rm ANE}(n)$-spaces
%J Fundamenta Mathematicae
%D 1994
%P 243-259
%V 145
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-3-243-259/
%R 10.4064/fm-145-3-243-259
%G en
%F 10_4064_fm_145_3_243_259
Valentin Gutev; Vesko Valov. Classical-type characterizations of non-metrizable ${\rm ANE}(n)$-spaces. Fundamenta Mathematicae, Tome 145 (1994) no. 3, pp. 243-259. doi : 10.4064/fm-145-3-243-259. http://geodesic.mathdoc.fr/articles/10.4064/fm-145-3-243-259/

Cité par Sources :