An axiomatic theory of non-absolutely convergent integrals in Rn
Fundamenta Mathematicae, Tome 145 (1994) no. 3, pp. 221-242.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce an axiomatic approach to the theory of non-absolutely convergent integrals. The definition of our ν-integral will be descriptive and depends mainly on characteristic null conditions. By specializing our concepts we will later obtain concrete theories of integration with natural properties and very general versions of the divergence theorem.
DOI : 10.4064/fm-145-3-221-242

W. Jurkat 1 ; D. Nonnenmacher 1

1
@article{10_4064_fm_145_3_221_242,
     author = {W. Jurkat and D. Nonnenmacher},
     title = {An axiomatic theory of non-absolutely convergent integrals in {Rn}},
     journal = {Fundamenta Mathematicae},
     pages = {221--242},
     publisher = {mathdoc},
     volume = {145},
     number = {3},
     year = {1994},
     doi = {10.4064/fm-145-3-221-242},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-3-221-242/}
}
TY  - JOUR
AU  - W. Jurkat
AU  - D. Nonnenmacher
TI  - An axiomatic theory of non-absolutely convergent integrals in Rn
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 221
EP  - 242
VL  - 145
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-3-221-242/
DO  - 10.4064/fm-145-3-221-242
LA  - en
ID  - 10_4064_fm_145_3_221_242
ER  - 
%0 Journal Article
%A W. Jurkat
%A D. Nonnenmacher
%T An axiomatic theory of non-absolutely convergent integrals in Rn
%J Fundamenta Mathematicae
%D 1994
%P 221-242
%V 145
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-3-221-242/
%R 10.4064/fm-145-3-221-242
%G en
%F 10_4064_fm_145_3_221_242
W. Jurkat; D. Nonnenmacher. An axiomatic theory of non-absolutely convergent integrals in Rn. Fundamenta Mathematicae, Tome 145 (1994) no. 3, pp. 221-242. doi : 10.4064/fm-145-3-221-242. http://geodesic.mathdoc.fr/articles/10.4064/fm-145-3-221-242/

Cité par Sources :