Decomposing Baire class 1 functions into continuous functions
Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 171-180
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is shown to be consistent that every function of first Baire class can be decomposed into $ℵ_1$ continuous functions yet the least cardinal of a dominating family in $^ωω$ is $ℵ_2$. The model used in the one obtained by adding $ω_2$ Miller reals to a model of the Continuum Hypothesis.
Affiliations des auteurs :
Saharon Shelah 1 ; Juris Steprāns 1
@article{10_4064_fm_145_2_171_180,
author = {Saharon Shelah and Juris Stepr\={a}ns},
title = {Decomposing {Baire} class 1 functions into continuous functions},
journal = {Fundamenta Mathematicae},
pages = {171--180},
year = {1994},
volume = {145},
number = {2},
doi = {10.4064/fm-145-2-171-180},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-171-180/}
}
TY - JOUR AU - Saharon Shelah AU - Juris Steprāns TI - Decomposing Baire class 1 functions into continuous functions JO - Fundamenta Mathematicae PY - 1994 SP - 171 EP - 180 VL - 145 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-171-180/ DO - 10.4064/fm-145-2-171-180 LA - en ID - 10_4064_fm_145_2_171_180 ER -
%0 Journal Article %A Saharon Shelah %A Juris Steprāns %T Decomposing Baire class 1 functions into continuous functions %J Fundamenta Mathematicae %D 1994 %P 171-180 %V 145 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-171-180/ %R 10.4064/fm-145-2-171-180 %G en %F 10_4064_fm_145_2_171_180
Saharon Shelah; Juris Steprāns. Decomposing Baire class 1 functions into continuous functions. Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 171-180. doi: 10.4064/fm-145-2-171-180
Cité par Sources :