Decomposing Baire class 1 functions into continuous functions
Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 171-180.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown to be consistent that every function of first Baire class can be decomposed into $ℵ_1$ continuous functions yet the least cardinal of a dominating family in $^ωω$ is $ℵ_2$. The model used in the one obtained by adding $ω_2$ Miller reals to a model of the Continuum Hypothesis.
DOI : 10.4064/fm-145-2-171-180

Saharon Shelah 1 ; Juris Steprāns 1

1
@article{10_4064_fm_145_2_171_180,
     author = {Saharon Shelah and Juris Stepr\={a}ns},
     title = {Decomposing {Baire} class 1 functions into continuous functions},
     journal = {Fundamenta Mathematicae},
     pages = {171--180},
     publisher = {mathdoc},
     volume = {145},
     number = {2},
     year = {1994},
     doi = {10.4064/fm-145-2-171-180},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-171-180/}
}
TY  - JOUR
AU  - Saharon Shelah
AU  - Juris Steprāns
TI  - Decomposing Baire class 1 functions into continuous functions
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 171
EP  - 180
VL  - 145
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-171-180/
DO  - 10.4064/fm-145-2-171-180
LA  - en
ID  - 10_4064_fm_145_2_171_180
ER  - 
%0 Journal Article
%A Saharon Shelah
%A Juris Steprāns
%T Decomposing Baire class 1 functions into continuous functions
%J Fundamenta Mathematicae
%D 1994
%P 171-180
%V 145
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-171-180/
%R 10.4064/fm-145-2-171-180
%G en
%F 10_4064_fm_145_2_171_180
Saharon Shelah; Juris Steprāns. Decomposing Baire class 1 functions into continuous functions. Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 171-180. doi : 10.4064/fm-145-2-171-180. http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-171-180/

Cité par Sources :