Recursive expansions
Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 153-169.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let A be a recursive structure, and let ψ be a recursive infinitary ${Π}_2$ sentence involving a new relation symbol. The main result of the paper gives syntactical conditions which are necessary and sufficient for every recursive copy of A to have a recursive expansion to a model of ψ, provided A satisfies certain decidability conditions. The decidability conditions involve a notion of rank. The main result is applied to prove some earlier results of Metakides-Nerode and Goncharov. In these applications, the ranks turn out to be low, but there are examples in which the rank takes arbitrary recursive ordinal values.
DOI : 10.4064/fm-145-2-153-169

C. Ash 1 ; J. Knight 1

1
@article{10_4064_fm_145_2_153_169,
     author = {C. Ash and J. Knight},
     title = {Recursive expansions},
     journal = {Fundamenta Mathematicae},
     pages = {153--169},
     publisher = {mathdoc},
     volume = {145},
     number = {2},
     year = {1994},
     doi = {10.4064/fm-145-2-153-169},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-153-169/}
}
TY  - JOUR
AU  - C. Ash
AU  - J. Knight
TI  - Recursive expansions
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 153
EP  - 169
VL  - 145
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-153-169/
DO  - 10.4064/fm-145-2-153-169
LA  - en
ID  - 10_4064_fm_145_2_153_169
ER  - 
%0 Journal Article
%A C. Ash
%A J. Knight
%T Recursive expansions
%J Fundamenta Mathematicae
%D 1994
%P 153-169
%V 145
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-153-169/
%R 10.4064/fm-145-2-153-169
%G en
%F 10_4064_fm_145_2_153_169
C. Ash; J. Knight. Recursive expansions. Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 153-169. doi : 10.4064/fm-145-2-153-169. http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-153-169/

Cité par Sources :