Universal spaces in the theory of transfinite dimension, II
Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 121-139.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct a family of spaces with "nice" structure which is universal in the class of all compact metrizable spaces of large transfinite dimension $ω_0$, or, equivalently, of small transfinite dimension $ω_0$; that is, the family consists of compact metrizable spaces whose transfinite dimension is $ω_0$, and every compact metrizable space with transfinite dimension $ω_0$ is embeddable in a space of the family. We show that the least possible cardinality of such a universal family is equal to the least possible cardinality of a dominating sequence of irrational numbers.
DOI : 10.4064/fm-145-2-121-139

Wojciech Olszewski 1

1
@article{10_4064_fm_145_2_121_139,
     author = {Wojciech Olszewski},
     title = {Universal spaces in the theory of transfinite dimension, {II}},
     journal = {Fundamenta Mathematicae},
     pages = {121--139},
     publisher = {mathdoc},
     volume = {145},
     number = {2},
     year = {1994},
     doi = {10.4064/fm-145-2-121-139},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-121-139/}
}
TY  - JOUR
AU  - Wojciech Olszewski
TI  - Universal spaces in the theory of transfinite dimension, II
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 121
EP  - 139
VL  - 145
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-121-139/
DO  - 10.4064/fm-145-2-121-139
LA  - en
ID  - 10_4064_fm_145_2_121_139
ER  - 
%0 Journal Article
%A Wojciech Olszewski
%T Universal spaces in the theory of transfinite dimension, II
%J Fundamenta Mathematicae
%D 1994
%P 121-139
%V 145
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-121-139/
%R 10.4064/fm-145-2-121-139
%G en
%F 10_4064_fm_145_2_121_139
Wojciech Olszewski. Universal spaces in the theory of transfinite dimension, II. Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 121-139. doi : 10.4064/fm-145-2-121-139. http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-121-139/

Cité par Sources :