On partitions of lines and space
Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 101-119
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a set, L, of lines in $ℝ^n$ and a partition of L into some number of sets: $L = L_1∪...∪ L_p$. We seek a corresponding partition $ℝ^n = S_1 ∪...∪ S_p$ such that each line l in $L_i$ meets the set $S_i$ in a set whose cardinality has some fixed bound, $ω_τ$. We determine equivalences between the bounds on the size of the continuum, $2^ω ≤ ω_θ$, and some relationships between p, $ω_τ$ and $ω_θ$.
Mots-clés :
transfinite recursion
Affiliations des auteurs :
P. Erdős 1 ; Steve Jackson 1 ; R. Daniel Mauldin 1
@article{10_4064_fm_145_2_101_119,
author = {P. Erd\H{o}s and Steve Jackson and R. Daniel Mauldin},
title = {On partitions of lines and space},
journal = {Fundamenta Mathematicae},
pages = {101--119},
publisher = {mathdoc},
volume = {145},
number = {2},
year = {1994},
doi = {10.4064/fm-145-2-101-119},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-101-119/}
}
TY - JOUR AU - P. Erdős AU - Steve Jackson AU - R. Daniel Mauldin TI - On partitions of lines and space JO - Fundamenta Mathematicae PY - 1994 SP - 101 EP - 119 VL - 145 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-101-119/ DO - 10.4064/fm-145-2-101-119 LA - fr ID - 10_4064_fm_145_2_101_119 ER -
%0 Journal Article %A P. Erdős %A Steve Jackson %A R. Daniel Mauldin %T On partitions of lines and space %J Fundamenta Mathematicae %D 1994 %P 101-119 %V 145 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-2-101-119/ %R 10.4064/fm-145-2-101-119 %G fr %F 10_4064_fm_145_2_101_119
P. Erdős; Steve Jackson; R. Daniel Mauldin. On partitions of lines and space. Fundamenta Mathematicae, Tome 145 (1994) no. 2, pp. 101-119. doi: 10.4064/fm-145-2-101-119
Cité par Sources :