Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique
Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 65-77
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that if A is a basin of immediate attraction to a periodic attracting or parabolic point for a rational map f on the Riemann sphere, then the periodic points in the boundary of A are dense in this boundary. To prove this in the non-simply connected or parabolic situations we prove a more abstract, geometric coding trees version.
@article{10_4064_fm_145_1_65_77,
author = {F. Przytycki and A. Zdunik},
title = {Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique},
journal = {Fundamenta Mathematicae},
pages = {65--77},
year = {1994},
volume = {145},
number = {1},
doi = {10.4064/fm-145-1-65-77},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-65-77/}
}
TY - JOUR AU - F. Przytycki AU - A. Zdunik TI - Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique JO - Fundamenta Mathematicae PY - 1994 SP - 65 EP - 77 VL - 145 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-65-77/ DO - 10.4064/fm-145-1-65-77 LA - en ID - 10_4064_fm_145_1_65_77 ER -
%0 Journal Article %A F. Przytycki %A A. Zdunik %T Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique %J Fundamenta Mathematicae %D 1994 %P 65-77 %V 145 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-65-77/ %R 10.4064/fm-145-1-65-77 %G en %F 10_4064_fm_145_1_65_77
F. Przytycki; A. Zdunik. Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique. Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 65-77. doi: 10.4064/fm-145-1-65-77
Cité par Sources :