Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique
Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 65-77.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if A is a basin of immediate attraction to a periodic attracting or parabolic point for a rational map f on the Riemann sphere, then the periodic points in the boundary of A are dense in this boundary. To prove this in the non-simply connected or parabolic situations we prove a more abstract, geometric coding trees version.
DOI : 10.4064/fm-145-1-65-77

F. Przytycki 1 ; A. Zdunik 1

1
@article{10_4064_fm_145_1_65_77,
     author = {F. Przytycki and A. Zdunik},
     title = {Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique},
     journal = {Fundamenta Mathematicae},
     pages = {65--77},
     publisher = {mathdoc},
     volume = {145},
     number = {1},
     year = {1994},
     doi = {10.4064/fm-145-1-65-77},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-65-77/}
}
TY  - JOUR
AU  - F. Przytycki
AU  - A. Zdunik
TI  - Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 65
EP  - 77
VL  - 145
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-65-77/
DO  - 10.4064/fm-145-1-65-77
LA  - en
ID  - 10_4064_fm_145_1_65_77
ER  - 
%0 Journal Article
%A F. Przytycki
%A A. Zdunik
%T Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique
%J Fundamenta Mathematicae
%D 1994
%P 65-77
%V 145
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-65-77/
%R 10.4064/fm-145-1-65-77
%G en
%F 10_4064_fm_145_1_65_77
F. Przytycki; A. Zdunik. Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique. Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 65-77. doi : 10.4064/fm-145-1-65-77. http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-65-77/

Cité par Sources :