Cantor manifolds in the theory of transfinite dimension
Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 39-64.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For every countable non-limit ordinal α we construct an α-dimensional Cantor ind-manifold, i.e., a compact metrizable space $Z_α$ such that $ind Z_α = α$, and no closed subset L of $Z_α$ with ind L less than the predecessor of α is a partition in $Z_α$. An α-dimensional Cantor Ind-manifold can be constructed similarly.
DOI : 10.4064/fm-145-1-39-64

Wojciech Olszewski 1

1
@article{10_4064_fm_145_1_39_64,
     author = {Wojciech  Olszewski},
     title = {Cantor manifolds in the theory of transfinite dimension},
     journal = {Fundamenta Mathematicae},
     pages = {39--64},
     publisher = {mathdoc},
     volume = {145},
     number = {1},
     year = {1994},
     doi = {10.4064/fm-145-1-39-64},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-39-64/}
}
TY  - JOUR
AU  - Wojciech  Olszewski
TI  - Cantor manifolds in the theory of transfinite dimension
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 39
EP  - 64
VL  - 145
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-39-64/
DO  - 10.4064/fm-145-1-39-64
LA  - en
ID  - 10_4064_fm_145_1_39_64
ER  - 
%0 Journal Article
%A Wojciech  Olszewski
%T Cantor manifolds in the theory of transfinite dimension
%J Fundamenta Mathematicae
%D 1994
%P 39-64
%V 145
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-39-64/
%R 10.4064/fm-145-1-39-64
%G en
%F 10_4064_fm_145_1_39_64
Wojciech  Olszewski. Cantor manifolds in the theory of transfinite dimension. Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 39-64. doi : 10.4064/fm-145-1-39-64. http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-39-64/

Cité par Sources :