Cantor manifolds in the theory of transfinite dimension
Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 39-64
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For every countable non-limit ordinal α we construct an α-dimensional Cantor ind-manifold, i.e., a compact metrizable space $Z_α$ such that $ind Z_α = α$, and no closed subset L of $Z_α$ with ind L less than the predecessor of α is a partition in $Z_α$. An α-dimensional Cantor Ind-manifold can be constructed similarly.
@article{10_4064_fm_145_1_39_64,
author = {Wojciech Olszewski},
title = {Cantor manifolds in the theory of transfinite dimension},
journal = {Fundamenta Mathematicae},
pages = {39--64},
year = {1994},
volume = {145},
number = {1},
doi = {10.4064/fm-145-1-39-64},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-145-1-39-64/}
}
Wojciech Olszewski. Cantor manifolds in the theory of transfinite dimension. Fundamenta Mathematicae, Tome 145 (1994) no. 1, pp. 39-64. doi: 10.4064/fm-145-1-39-64
Cité par Sources :