Homology lens spaces and Dehn surgery on homology spheres
Fundamenta Mathematicae, Tome 144 (1994) no. 3, pp. 287-292
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A homology lens space is a closed 3-manifold with ℤ-homology groups isomorphic to those of a lens space. A useful theorem found in [Fu] states that a homology lens space $M^3$ may be obtained by an (n/1)-Dehn surgery on a homology 3-sphere if and only if the linking form of $M^3$ is equivalent to (1/n). In this note we generalize this result to cover all homology lens spaces, and in the process offer an alternative proof based on classical 3-manifold techniques.
@article{10_4064_fm_144_3_287_292,
author = {Craig R. Guilbault },
title = {Homology lens spaces and {Dehn} surgery on homology spheres},
journal = {Fundamenta Mathematicae},
pages = {287--292},
publisher = {mathdoc},
volume = {144},
number = {3},
year = {1994},
doi = {10.4064/fm-144-3-287-292},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-144-3-287-292/}
}
TY - JOUR AU - Craig R. Guilbault TI - Homology lens spaces and Dehn surgery on homology spheres JO - Fundamenta Mathematicae PY - 1994 SP - 287 EP - 292 VL - 144 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-144-3-287-292/ DO - 10.4064/fm-144-3-287-292 LA - en ID - 10_4064_fm_144_3_287_292 ER -
Craig R. Guilbault . Homology lens spaces and Dehn surgery on homology spheres. Fundamenta Mathematicae, Tome 144 (1994) no. 3, pp. 287-292. doi: 10.4064/fm-144-3-287-292
Cité par Sources :