Ordinal products of topological spaces
Fundamenta Mathematicae, Tome 144 (1994) no. 2, pp. 95-117
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The notion of the ordinal product of a transfinite sequence of topological spaces which is an extension of the finite product operation is introduced. The dimensions of finite and infinite ordinal products are estimated. In particular, the dimensions of ordinary products of Smirnov's [S] and Henderson's [He1] compacta are calculated.
@article{10_4064_fm_144_2_95_117,
author = {Vitalij Chatyrko},
title = {Ordinal products of topological spaces},
journal = {Fundamenta Mathematicae},
pages = {95--117},
year = {1994},
volume = {144},
number = {2},
doi = {10.4064/fm-144-2-95-117},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-95-117/}
}
Vitalij Chatyrko. Ordinal products of topological spaces. Fundamenta Mathematicae, Tome 144 (1994) no. 2, pp. 95-117. doi: 10.4064/fm-144-2-95-117
Cité par Sources :