Minimal bi-Lipschitz embedding dimension of ultrametric spaces
Fundamenta Mathematicae, Tome 144 (1994) no. 2, pp. 181-193.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that an ultrametric space can be bi-Lipschitz embedded in $ℝ^n$ if its metric dimension in Assouad's sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.
DOI : 10.4064/fm-144-2-181-193

Jouni Luukkainen  1 ; Hossein Movahedi-Lankarani 2

1 Department of Mathematics P.O. Box 4 (Hallituskatu 15) FIN-00014 University of Helsinki Finland
2 Department of Mathematics Penn State Altoona Altoona, PA 16601–3760 U.S.A.
@article{10_4064_fm_144_2_181_193,
     author = {Jouni Luukkainen  and Hossein Movahedi-Lankarani},
     title = {Minimal {bi-Lipschitz} embedding dimension of ultrametric spaces},
     journal = {Fundamenta Mathematicae},
     pages = {181--193},
     publisher = {mathdoc},
     volume = {144},
     number = {2},
     year = {1994},
     doi = {10.4064/fm-144-2-181-193},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-181-193/}
}
TY  - JOUR
AU  - Jouni Luukkainen 
AU  - Hossein Movahedi-Lankarani
TI  - Minimal bi-Lipschitz embedding dimension of ultrametric spaces
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 181
EP  - 193
VL  - 144
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-181-193/
DO  - 10.4064/fm-144-2-181-193
LA  - en
ID  - 10_4064_fm_144_2_181_193
ER  - 
%0 Journal Article
%A Jouni Luukkainen 
%A Hossein Movahedi-Lankarani
%T Minimal bi-Lipschitz embedding dimension of ultrametric spaces
%J Fundamenta Mathematicae
%D 1994
%P 181-193
%V 144
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-181-193/
%R 10.4064/fm-144-2-181-193
%G en
%F 10_4064_fm_144_2_181_193
Jouni Luukkainen ; Hossein Movahedi-Lankarani. Minimal bi-Lipschitz embedding dimension of ultrametric spaces. Fundamenta Mathematicae, Tome 144 (1994) no. 2, pp. 181-193. doi : 10.4064/fm-144-2-181-193. http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-181-193/

Cité par Sources :