Minimal bi-Lipschitz embedding dimension of ultrametric spaces
Fundamenta Mathematicae, Tome 144 (1994) no. 2, pp. 181-193
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that an ultrametric space can be bi-Lipschitz embedded in $ℝ^n$ if its metric dimension in Assouad's sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.
Affiliations des auteurs :
Jouni Luukkainen  1 ; Hossein Movahedi-Lankarani 2
@article{10_4064_fm_144_2_181_193,
author = {Jouni Luukkainen and Hossein Movahedi-Lankarani},
title = {Minimal {bi-Lipschitz} embedding dimension of ultrametric spaces},
journal = {Fundamenta Mathematicae},
pages = {181--193},
publisher = {mathdoc},
volume = {144},
number = {2},
year = {1994},
doi = {10.4064/fm-144-2-181-193},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-181-193/}
}
TY - JOUR AU - Jouni Luukkainen AU - Hossein Movahedi-Lankarani TI - Minimal bi-Lipschitz embedding dimension of ultrametric spaces JO - Fundamenta Mathematicae PY - 1994 SP - 181 EP - 193 VL - 144 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-181-193/ DO - 10.4064/fm-144-2-181-193 LA - en ID - 10_4064_fm_144_2_181_193 ER -
%0 Journal Article %A Jouni Luukkainen %A Hossein Movahedi-Lankarani %T Minimal bi-Lipschitz embedding dimension of ultrametric spaces %J Fundamenta Mathematicae %D 1994 %P 181-193 %V 144 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-181-193/ %R 10.4064/fm-144-2-181-193 %G en %F 10_4064_fm_144_2_181_193
Jouni Luukkainen ; Hossein Movahedi-Lankarani. Minimal bi-Lipschitz embedding dimension of ultrametric spaces. Fundamenta Mathematicae, Tome 144 (1994) no. 2, pp. 181-193. doi: 10.4064/fm-144-2-181-193
Cité par Sources :