Raising dimension under all projections
Fundamenta Mathematicae, Tome 144 (1994) no. 2, pp. 119-128.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

As a special case of the general question - "What information can be obtained about the dimension of a subset of $ℝ^n$ by looking at its orthogonal projections into hyperplanes?" - we construct a Cantor set in $ℝ^3$ each of whose projections into 2-planes is 1-dimensional. We also consider projections of Cantor sets in $ℝ^n$ whose images contain open sets, expanding on a result of Borsuk.
DOI : 10.4064/fm-144-2-119-128

John Cobb 1

1
@article{10_4064_fm_144_2_119_128,
     author = {John Cobb},
     title = {Raising dimension under all projections},
     journal = {Fundamenta Mathematicae},
     pages = {119--128},
     publisher = {mathdoc},
     volume = {144},
     number = {2},
     year = {1994},
     doi = {10.4064/fm-144-2-119-128},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-119-128/}
}
TY  - JOUR
AU  - John Cobb
TI  - Raising dimension under all projections
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 119
EP  - 128
VL  - 144
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-119-128/
DO  - 10.4064/fm-144-2-119-128
LA  - en
ID  - 10_4064_fm_144_2_119_128
ER  - 
%0 Journal Article
%A John Cobb
%T Raising dimension under all projections
%J Fundamenta Mathematicae
%D 1994
%P 119-128
%V 144
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-119-128/
%R 10.4064/fm-144-2-119-128
%G en
%F 10_4064_fm_144_2_119_128
John Cobb. Raising dimension under all projections. Fundamenta Mathematicae, Tome 144 (1994) no. 2, pp. 119-128. doi : 10.4064/fm-144-2-119-128. http://geodesic.mathdoc.fr/articles/10.4064/fm-144-2-119-128/

Cité par Sources :