Every Lusin set is undetermined in the point-open game
Fundamenta Mathematicae, Tome 144 (1994) no. 1, pp. 43-54 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We show that some classes of small sets are topological versions of some combinatorial properties. We also give a characterization of spaces for which White has a winning strategy in the point-open game. We show that every Lusin set is undetermined, which solves a problem of Galvin.
DOI : 10.4064/fm-144-1-43-54
Keywords: point-open games, Lusin set, additivity of measure, γ-set
@article{10_4064_fm_144_1_43_54,
     author = {Ireneusz Rec{\l}aw},
     title = {Every {Lusin} set is undetermined in the point-open game},
     journal = {Fundamenta Mathematicae},
     pages = {43--54},
     year = {1994},
     volume = {144},
     number = {1},
     doi = {10.4064/fm-144-1-43-54},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-144-1-43-54/}
}
TY  - JOUR
AU  - Ireneusz Recław
TI  - Every Lusin set is undetermined in the point-open game
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 43
EP  - 54
VL  - 144
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-144-1-43-54/
DO  - 10.4064/fm-144-1-43-54
LA  - en
ID  - 10_4064_fm_144_1_43_54
ER  - 
%0 Journal Article
%A Ireneusz Recław
%T Every Lusin set is undetermined in the point-open game
%J Fundamenta Mathematicae
%D 1994
%P 43-54
%V 144
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-144-1-43-54/
%R 10.4064/fm-144-1-43-54
%G en
%F 10_4064_fm_144_1_43_54
Ireneusz Recław. Every Lusin set is undetermined in the point-open game. Fundamenta Mathematicae, Tome 144 (1994) no. 1, pp. 43-54. doi: 10.4064/fm-144-1-43-54

Cité par Sources :