The dimension of remainders of rim-compact spaces
Fundamenta Mathematicae, Tome 143 (1993) no. 3, pp. 287-289.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Answering a question of Isbell we show that there exists a rim-compact space X such that every compactification Y of X has dim(Y\X)≥ 1.
DOI : 10.4064/fm-143-3-287-289

J. M. Aarts 1 ; E. Coplakova 1

1 Faculty of Technical Mathematics and Informatics Tu Delft Postbus 5031 2600 GA Delft, The Netherlands
@article{10_4064_fm_143_3_287_289,
     author = {J. M. Aarts and E. Coplakova},
     title = {The dimension of remainders of rim-compact spaces},
     journal = {Fundamenta Mathematicae},
     pages = {287--289},
     publisher = {mathdoc},
     volume = {143},
     number = {3},
     year = {1993},
     doi = {10.4064/fm-143-3-287-289},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-143-3-287-289/}
}
TY  - JOUR
AU  - J. M. Aarts
AU  - E. Coplakova
TI  - The dimension of remainders of rim-compact spaces
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 287
EP  - 289
VL  - 143
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-143-3-287-289/
DO  - 10.4064/fm-143-3-287-289
LA  - en
ID  - 10_4064_fm_143_3_287_289
ER  - 
%0 Journal Article
%A J. M. Aarts
%A E. Coplakova
%T The dimension of remainders of rim-compact spaces
%J Fundamenta Mathematicae
%D 1993
%P 287-289
%V 143
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-143-3-287-289/
%R 10.4064/fm-143-3-287-289
%G en
%F 10_4064_fm_143_3_287_289
J. M. Aarts; E. Coplakova. The dimension of remainders of rim-compact spaces. Fundamenta Mathematicae, Tome 143 (1993) no. 3, pp. 287-289. doi : 10.4064/fm-143-3-287-289. http://geodesic.mathdoc.fr/articles/10.4064/fm-143-3-287-289/

Cité par Sources :