Weakly normal ideals ou PKl and the singular cardinal hypothesis
Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 97-106
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In §1, we observe that a weakly normal ideal has a saturation property; we also show that the existence of certain precipitous ideals is sufficient for the existence of weakly normal ideals. In §2, generalizing Solovay's theorem concerning strongly compact cardinals, we show that $λ^{$ is decided if $P_κλ$ carries a weakly normal ideal and λ is regular or cf λ ≤ κ. This is applied to solving the singular cardinal hypothesis.
@article{10_4064_fm_143_2_97_106,
author = {Yoshihiro Abe},
title = {Weakly normal ideals ou {PKl} and the singular cardinal hypothesis},
journal = {Fundamenta Mathematicae},
pages = {97--106},
year = {1993},
volume = {143},
number = {2},
doi = {10.4064/fm-143-2-97-106},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-97-106/}
}
TY - JOUR AU - Yoshihiro Abe TI - Weakly normal ideals ou PKl and the singular cardinal hypothesis JO - Fundamenta Mathematicae PY - 1993 SP - 97 EP - 106 VL - 143 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-97-106/ DO - 10.4064/fm-143-2-97-106 LA - en ID - 10_4064_fm_143_2_97_106 ER -
Yoshihiro Abe. Weakly normal ideals ou PKl and the singular cardinal hypothesis. Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 97-106. doi: 10.4064/fm-143-2-97-106
Cité par Sources :