Weakly normal ideals ou PKl and the singular cardinal hypothesis
Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 97-106.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In §1, we observe that a weakly normal ideal has a saturation property; we also show that the existence of certain precipitous ideals is sufficient for the existence of weakly normal ideals. In §2, generalizing Solovay's theorem concerning strongly compact cardinals, we show that $λ^{$ is decided if $P_κλ$ carries a weakly normal ideal and λ is regular or cf λ ≤ κ. This is applied to solving the singular cardinal hypothesis.
DOI : 10.4064/fm-143-2-97-106

Yoshihiro Abe 1

1
@article{10_4064_fm_143_2_97_106,
     author = {Yoshihiro Abe},
     title = {Weakly normal ideals ou {PKl} and the singular cardinal hypothesis},
     journal = {Fundamenta Mathematicae},
     pages = {97--106},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {1993},
     doi = {10.4064/fm-143-2-97-106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-97-106/}
}
TY  - JOUR
AU  - Yoshihiro Abe
TI  - Weakly normal ideals ou PKl and the singular cardinal hypothesis
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 97
EP  - 106
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-97-106/
DO  - 10.4064/fm-143-2-97-106
LA  - en
ID  - 10_4064_fm_143_2_97_106
ER  - 
%0 Journal Article
%A Yoshihiro Abe
%T Weakly normal ideals ou PKl and the singular cardinal hypothesis
%J Fundamenta Mathematicae
%D 1993
%P 97-106
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-97-106/
%R 10.4064/fm-143-2-97-106
%G en
%F 10_4064_fm_143_2_97_106
Yoshihiro Abe. Weakly normal ideals ou PKl and the singular cardinal hypothesis. Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 97-106. doi : 10.4064/fm-143-2-97-106. http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-97-106/

Cité par Sources :