The Bohr compactification, modulo a metrizable subgroup
Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 119-136.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The authors prove the following result, which generalizes a well-known theorem of I. Glicksberg [G]: If G is a locally compact Abelian group with Bohr compactification bG, and if N is a closed metrizable subgroup of bG, then every A ⊆ G satisfies: A·(N ∩ G) is compact in G if and only if {aN:a ∈ A} is compact in bG/N. Examples are given to show: (a) the asserted equivalence can fail in the absence of the metrizability hypothesis, even when N ∩ G = {1}; (b) the asserted equivalence can hold for suitable G and N with N closed in bG but not metrizable; (c) an Abelian group may admit two topological group topologies U and T, with U totally bounded, T locally compact,U ⊆ T, with U and T sharing the same compact sets, and such that nevertheless U is not the topology inherited from the Bohr compactification of 〈 G, T〉. There are applications to topological groups of the form kG for G a totally bounded Abelian group.
DOI : 10.4064/fm-143-2-119-136

W. W. Comfort 1 ; F. Javier Trigos-Arrieta 2 ; Ta-Sun Wu 3

1 Department of Mathematics Wesleyan University Middletown, Connecticut 06459 U.S.A.
2 Department of Mathematics California State University Bakersfield, California 93311-1099 U.S.A.
3 Department of Mathematics Case Western Reserve University Cleveland, Ohio 44106-7058 U.S.A.
@article{10_4064_fm_143_2_119_136,
     author = {W. W. Comfort and F. Javier Trigos-Arrieta and Ta-Sun Wu},
     title = {The {Bohr} compactification, modulo a metrizable subgroup},
     journal = {Fundamenta Mathematicae},
     pages = {119--136},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {1993},
     doi = {10.4064/fm-143-2-119-136},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-119-136/}
}
TY  - JOUR
AU  - W. W. Comfort
AU  - F. Javier Trigos-Arrieta
AU  - Ta-Sun Wu
TI  - The Bohr compactification, modulo a metrizable subgroup
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 119
EP  - 136
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-119-136/
DO  - 10.4064/fm-143-2-119-136
LA  - en
ID  - 10_4064_fm_143_2_119_136
ER  - 
%0 Journal Article
%A W. W. Comfort
%A F. Javier Trigos-Arrieta
%A Ta-Sun Wu
%T The Bohr compactification, modulo a metrizable subgroup
%J Fundamenta Mathematicae
%D 1993
%P 119-136
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-119-136/
%R 10.4064/fm-143-2-119-136
%G en
%F 10_4064_fm_143_2_119_136
W. W. Comfort; F. Javier Trigos-Arrieta; Ta-Sun Wu. The Bohr compactification, modulo a metrizable subgroup. Fundamenta Mathematicae, Tome 143 (1993) no. 2, pp. 119-136. doi : 10.4064/fm-143-2-119-136. http://geodesic.mathdoc.fr/articles/10.4064/fm-143-2-119-136/

Cité par Sources :