Lindelöf property and the iterated continuous function spaces
Fundamenta Mathematicae, Tome 143 (1993) no. 1, pp. 87-95.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give an example of a compact space X whose iterated continuous function spaces $C_{p}(X)$, $C_pC_p(X), ...$ are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul'ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces $C_{p}(X)$ on compact scattered spaces with the $ω_1$th derived set empty, improving some earlier results of Pol [12] in this direction.
DOI : 10.4064/fm-143-1-87-95

G. Sokolov 1

1
@article{10_4064_fm_143_1_87_95,
     author = {G. Sokolov},
     title = {Lindel\"of property and the iterated continuous function spaces},
     journal = {Fundamenta Mathematicae},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {143},
     number = {1},
     year = {1993},
     doi = {10.4064/fm-143-1-87-95},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-143-1-87-95/}
}
TY  - JOUR
AU  - G. Sokolov
TI  - Lindelöf property and the iterated continuous function spaces
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 87
EP  - 95
VL  - 143
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-143-1-87-95/
DO  - 10.4064/fm-143-1-87-95
LA  - en
ID  - 10_4064_fm_143_1_87_95
ER  - 
%0 Journal Article
%A G. Sokolov
%T Lindelöf property and the iterated continuous function spaces
%J Fundamenta Mathematicae
%D 1993
%P 87-95
%V 143
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-143-1-87-95/
%R 10.4064/fm-143-1-87-95
%G en
%F 10_4064_fm_143_1_87_95
G. Sokolov. Lindelöf property and the iterated continuous function spaces. Fundamenta Mathematicae, Tome 143 (1993) no. 1, pp. 87-95. doi : 10.4064/fm-143-1-87-95. http://geodesic.mathdoc.fr/articles/10.4064/fm-143-1-87-95/

Cité par Sources :