Lindelöf property and the iterated continuous function spaces
Fundamenta Mathematicae, Tome 143 (1993) no. 1, pp. 87-95
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give an example of a compact space X whose iterated continuous function spaces $C_{p}(X)$, $C_pC_p(X), ...$ are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul'ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces $C_{p}(X)$ on compact scattered spaces with the $ω_1$th derived set empty, improving some earlier results of Pol [12] in this direction.
@article{10_4064_fm_143_1_87_95,
author = {G. Sokolov},
title = {Lindel\"of property and the iterated continuous function spaces},
journal = {Fundamenta Mathematicae},
pages = {87--95},
publisher = {mathdoc},
volume = {143},
number = {1},
year = {1993},
doi = {10.4064/fm-143-1-87-95},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-143-1-87-95/}
}
TY - JOUR AU - G. Sokolov TI - Lindelöf property and the iterated continuous function spaces JO - Fundamenta Mathematicae PY - 1993 SP - 87 EP - 95 VL - 143 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-143-1-87-95/ DO - 10.4064/fm-143-1-87-95 LA - en ID - 10_4064_fm_143_1_87_95 ER -
G. Sokolov. Lindelöf property and the iterated continuous function spaces. Fundamenta Mathematicae, Tome 143 (1993) no. 1, pp. 87-95. doi: 10.4064/fm-143-1-87-95
Cité par Sources :