An invariant of bi-Lipschitz maps
Fundamenta Mathematicae, Tome 143 (1993) no. 1, pp. 1-9
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A new numerical invariant for the category of compact metric spaces and Lipschitz maps is introduced. This invariant takes a value less than or equal to 1 for compact metric spaces that are Lipschitz isomorphic to ultrametric ones. Furthermore, a theorem is provided which makes it possible to compute this invariant for a large class of spaces. In particular, by utilizing this invariant, it is shown that neither a fat Cantor set nor the set ${0}∪{1/n}_{n≥1}$ is Lipschitz isomorphic to an ultrametric space.
@article{10_4064_fm_143_1_1_9,
author = {Hossein Movahedi-Lankarani },
title = {An invariant of {bi-Lipschitz} maps},
journal = {Fundamenta Mathematicae},
pages = {1--9},
publisher = {mathdoc},
volume = {143},
number = {1},
year = {1993},
doi = {10.4064/fm-143-1-1-9},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-143-1-1-9/}
}
Hossein Movahedi-Lankarani . An invariant of bi-Lipschitz maps. Fundamenta Mathematicae, Tome 143 (1993) no. 1, pp. 1-9. doi: 10.4064/fm-143-1-1-9
Cité par Sources :