Imposing psendocompact group topologies on Abeliau groups
Fundamenta Mathematicae, Tome 142 (1993) no. 3, pp. 221-240.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, $m(α) ≤ 2^α$. We show:    Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m$(α)≤ r_0 (G) ≤ γ ≤ 2^α$, or α > ω and $α^ω ≤ r_0(G) ≤ 2^α$, then G admits a pseudocompact group topology of weight α.  Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies $r_0(G) ≥ m(α)$.  Theorem 5.2(b). If G is divisible Abelian with $2^{r_{0}(G)} ≤ γ$, then G admits at most $2^γ$-many pseudocompact group topologies.  Theorem 6.2. Let $β = α^ω$ or $β = 2^α$ with β ≥ α, and let $β ≤ γ κ ≤ 2^β$. Then both $⊕_γℚ$ and the free Abelian group on γ-many generators admit exactly $2^κ$-many pseudocompact group topologies of weight κ. Of these, some $κ^+$-many form a chain and some $2^κ$-many form an anti-chain.
DOI : 10.4064/fm-142-3-221-240
Keywords: pseudocompact group, $G_δ$-dense subgroup, singular cardinals hypothesis, torsion-free rank, connected topological group, 0-dimensional group, divisible hull, chain, anti-chain

W. W. Comfort 1 ; Dieter Remus  2

1 Department of Mathematics Wesleyan University Middletown, Connecticut 06459 U.S.A.
2 Institut für Mathematik Universität Hannover Welfengarten 1 d-3000 Hannover, Germany
@article{10_4064_fm_142_3_221_240,
     author = {W. W.  Comfort and Dieter  Remus },
     title = {Imposing psendocompact group topologies on {Abeliau} groups},
     journal = {Fundamenta Mathematicae},
     pages = {221--240},
     publisher = {mathdoc},
     volume = {142},
     number = {3},
     year = {1993},
     doi = {10.4064/fm-142-3-221-240},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-221-240/}
}
TY  - JOUR
AU  - W. W.  Comfort
AU  - Dieter  Remus 
TI  - Imposing psendocompact group topologies on Abeliau groups
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 221
EP  - 240
VL  - 142
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-221-240/
DO  - 10.4064/fm-142-3-221-240
LA  - en
ID  - 10_4064_fm_142_3_221_240
ER  - 
%0 Journal Article
%A W. W.  Comfort
%A Dieter  Remus 
%T Imposing psendocompact group topologies on Abeliau groups
%J Fundamenta Mathematicae
%D 1993
%P 221-240
%V 142
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-221-240/
%R 10.4064/fm-142-3-221-240
%G en
%F 10_4064_fm_142_3_221_240
W. W.  Comfort; Dieter  Remus . Imposing psendocompact group topologies on Abeliau groups. Fundamenta Mathematicae, Tome 142 (1993) no. 3, pp. 221-240. doi : 10.4064/fm-142-3-221-240. http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-221-240/

Cité par Sources :