The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, $m(α) ≤ 2^α$. We show: Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m$(α)≤ r_0 (G) ≤ γ ≤ 2^α$, or α > ω and $α^ω ≤ r_0(G) ≤ 2^α$, then G admits a pseudocompact group topology of weight α. Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies $r_0(G) ≥ m(α)$. Theorem 5.2(b). If G is divisible Abelian with $2^{r_{0}(G)} ≤ γ$, then G admits at most $2^γ$-many pseudocompact group topologies. Theorem 6.2. Let $β = α^ω$ or $β = 2^α$ with β ≥ α, and let $β ≤ γ κ ≤ 2^β$. Then both $⊕_γℚ$ and the free Abelian group on γ-many generators admit exactly $2^κ$-many pseudocompact group topologies of weight κ. Of these, some $κ^+$-many form a chain and some $2^κ$-many form an anti-chain.
@article{10_4064_fm_142_3_221_240,
author = {W. W. Comfort and Dieter Remus },
title = {Imposing psendocompact group topologies on {Abeliau} groups},
journal = {Fundamenta Mathematicae},
pages = {221--240},
year = {1993},
volume = {142},
number = {3},
doi = {10.4064/fm-142-3-221-240},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-221-240/}
}
TY - JOUR
AU - W. W. Comfort
AU - Dieter Remus
TI - Imposing psendocompact group topologies on Abeliau groups
JO - Fundamenta Mathematicae
PY - 1993
SP - 221
EP - 240
VL - 142
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-221-240/
DO - 10.4064/fm-142-3-221-240
LA - en
ID - 10_4064_fm_142_3_221_240
ER -
%0 Journal Article
%A W. W. Comfort
%A Dieter Remus
%T Imposing psendocompact group topologies on Abeliau groups
%J Fundamenta Mathematicae
%D 1993
%P 221-240
%V 142
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-221-240/
%R 10.4064/fm-142-3-221-240
%G en
%F 10_4064_fm_142_3_221_240
W. W. Comfort; Dieter Remus . Imposing psendocompact group topologies on Abeliau groups. Fundamenta Mathematicae, Tome 142 (1993) no. 3, pp. 221-240. doi: 10.4064/fm-142-3-221-240