A triple intersection theorem for the varieties SO(n)/Pd
Fundamenta Mathematicae, Tome 142 (1993) no. 3, pp. 201-220.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the Schubert calculus on the space of d-dimensional linear subspaces of a smooth n-dimensional quadric lying in the projective space. Following Hodge and Pedoe we develop the intersection theory of this space in a purely combinatorial manner. We prove in particular that if a triple intersection of Schubert cells on this space is nonempty then a certain combinatorial relation holds among the Schubert symbols involved, similar to the classical one. We also show when these necessary conditions are also sufficient to obtain a nontrivial intersection. Several examples are calculated to illustrate the main results.
DOI : 10.4064/fm-142-3-201-220

Sinan Sertöz 1

1 Department of Mathematics Bí̇lkent University 06533 Ankara, Turkey
@article{10_4064_fm_142_3_201_220,
     author = {Sinan Sert\"oz},
     title = {A triple intersection theorem for the varieties {SO(n)/Pd}},
     journal = {Fundamenta Mathematicae},
     pages = {201--220},
     publisher = {mathdoc},
     volume = {142},
     number = {3},
     year = {1993},
     doi = {10.4064/fm-142-3-201-220},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-201-220/}
}
TY  - JOUR
AU  - Sinan Sertöz
TI  - A triple intersection theorem for the varieties SO(n)/Pd
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 201
EP  - 220
VL  - 142
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-201-220/
DO  - 10.4064/fm-142-3-201-220
LA  - en
ID  - 10_4064_fm_142_3_201_220
ER  - 
%0 Journal Article
%A Sinan Sertöz
%T A triple intersection theorem for the varieties SO(n)/Pd
%J Fundamenta Mathematicae
%D 1993
%P 201-220
%V 142
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-201-220/
%R 10.4064/fm-142-3-201-220
%G en
%F 10_4064_fm_142_3_201_220
Sinan Sertöz. A triple intersection theorem for the varieties SO(n)/Pd. Fundamenta Mathematicae, Tome 142 (1993) no. 3, pp. 201-220. doi : 10.4064/fm-142-3-201-220. http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-201-220/

Cité par Sources :