A triple intersection theorem for the varieties SO(n)/Pd
Fundamenta Mathematicae, Tome 142 (1993) no. 3, pp. 201-220
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the Schubert calculus on the space of d-dimensional linear subspaces of a smooth n-dimensional quadric lying in the projective space. Following Hodge and Pedoe we develop the intersection theory of this space in a purely combinatorial manner. We prove in particular that if a triple intersection of Schubert cells on this space is nonempty then a certain combinatorial relation holds among the Schubert symbols involved, similar to the classical one. We also show when these necessary conditions are also sufficient to obtain a nontrivial intersection. Several examples are calculated to illustrate the main results.
@article{10_4064_fm_142_3_201_220,
author = {Sinan Sert\"oz},
title = {A triple intersection theorem for the varieties {SO(n)/Pd}},
journal = {Fundamenta Mathematicae},
pages = {201--220},
year = {1993},
volume = {142},
number = {3},
doi = {10.4064/fm-142-3-201-220},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-201-220/}
}
TY - JOUR AU - Sinan Sertöz TI - A triple intersection theorem for the varieties SO(n)/Pd JO - Fundamenta Mathematicae PY - 1993 SP - 201 EP - 220 VL - 142 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-142-3-201-220/ DO - 10.4064/fm-142-3-201-220 LA - en ID - 10_4064_fm_142_3_201_220 ER -
Sinan Sertöz. A triple intersection theorem for the varieties SO(n)/Pd. Fundamenta Mathematicae, Tome 142 (1993) no. 3, pp. 201-220. doi: 10.4064/fm-142-3-201-220
Cité par Sources :