Hyperspaces of Peano continua of euclidean spaces
Fundamenta Mathematicae, Tome 142 (1993) no. 2, pp. 173-188
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We prove that for n ≥ 3 the space $L(ℝ^n)$ is homeomorphic to $B^∞$, where B denotes the pseudo-boundary of the Hilbert cube Q.
Keywords:
Hilbert cube, Hilbert space, absorbing system, Z-set, $F_{σδ}$, hyperspace, Peano continuum, $ℝ^n$
Affiliations des auteurs :
Helma Gladdines 1 ; Jan van Mill  1
@article{10_4064_fm_142_2_173_188,
author = {Helma Gladdines and Jan van Mill },
title = {Hyperspaces of {Peano} continua of euclidean spaces},
journal = {Fundamenta Mathematicae},
pages = {173--188},
publisher = {mathdoc},
volume = {142},
number = {2},
year = {1993},
doi = {10.4064/fm-142-2-173-188},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-2-173-188/}
}
TY - JOUR AU - Helma Gladdines AU - Jan van Mill TI - Hyperspaces of Peano continua of euclidean spaces JO - Fundamenta Mathematicae PY - 1993 SP - 173 EP - 188 VL - 142 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-142-2-173-188/ DO - 10.4064/fm-142-2-173-188 LA - en ID - 10_4064_fm_142_2_173_188 ER -
%0 Journal Article %A Helma Gladdines %A Jan van Mill %T Hyperspaces of Peano continua of euclidean spaces %J Fundamenta Mathematicae %D 1993 %P 173-188 %V 142 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-142-2-173-188/ %R 10.4064/fm-142-2-173-188 %G en %F 10_4064_fm_142_2_173_188
Helma Gladdines; Jan van Mill . Hyperspaces of Peano continua of euclidean spaces. Fundamenta Mathematicae, Tome 142 (1993) no. 2, pp. 173-188. doi: 10.4064/fm-142-2-173-188
Cité par Sources :