On the LC1-spaces which are Cantor or arcwise homogeneous
Fundamenta Mathematicae, Tome 142 (1993) no. 2, pp. 139-146
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A space X containing a Cantor set (an arc) is Cantor (arcwise) homogeneous} iff for any two Cantor sets (arcs) A,B ⊂ X there is an autohomeomorphism h of X such that h(A)=B. It is proved that a continuum (an arcwise connected continuum) X such that either dim X=1 or $X ∈ LC^1$ is Cantor (arcwise) homogeneous iff X is a closed manifold of dimension at most 2.
@article{10_4064_fm_142_2_139_146,
author = {Hanna Patkowska},
title = {On the {LC1-spaces} which are {Cantor} or arcwise homogeneous},
journal = {Fundamenta Mathematicae},
pages = {139--146},
year = {1993},
volume = {142},
number = {2},
doi = {10.4064/fm-142-2-139-146},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-2-139-146/}
}
TY - JOUR AU - Hanna Patkowska TI - On the LC1-spaces which are Cantor or arcwise homogeneous JO - Fundamenta Mathematicae PY - 1993 SP - 139 EP - 146 VL - 142 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-142-2-139-146/ DO - 10.4064/fm-142-2-139-146 LA - en ID - 10_4064_fm_142_2_139_146 ER -
Hanna Patkowska. On the LC1-spaces which are Cantor or arcwise homogeneous. Fundamenta Mathematicae, Tome 142 (1993) no. 2, pp. 139-146. doi: 10.4064/fm-142-2-139-146
Cité par Sources :