On the LC1-spaces which are Cantor or arcwise homogeneous
Fundamenta Mathematicae, Tome 142 (1993) no. 2, pp. 139-146.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A space X containing a Cantor set (an arc) is Cantor (arcwise) homogeneous} iff for any two Cantor sets (arcs) A,B ⊂ X there is an autohomeomorphism h of X such that h(A)=B. It is proved that a continuum (an arcwise connected continuum) X such that either dim X=1 or $X ∈ LC^1$ is Cantor (arcwise) homogeneous iff X is a closed manifold of dimension at most 2.
DOI : 10.4064/fm-142-2-139-146

Hanna Patkowska 1

1
@article{10_4064_fm_142_2_139_146,
     author = {Hanna Patkowska},
     title = {On the {LC1-spaces} which are {Cantor} or arcwise homogeneous},
     journal = {Fundamenta Mathematicae},
     pages = {139--146},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {1993},
     doi = {10.4064/fm-142-2-139-146},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-2-139-146/}
}
TY  - JOUR
AU  - Hanna Patkowska
TI  - On the LC1-spaces which are Cantor or arcwise homogeneous
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 139
EP  - 146
VL  - 142
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-142-2-139-146/
DO  - 10.4064/fm-142-2-139-146
LA  - en
ID  - 10_4064_fm_142_2_139_146
ER  - 
%0 Journal Article
%A Hanna Patkowska
%T On the LC1-spaces which are Cantor or arcwise homogeneous
%J Fundamenta Mathematicae
%D 1993
%P 139-146
%V 142
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-142-2-139-146/
%R 10.4064/fm-142-2-139-146
%G en
%F 10_4064_fm_142_2_139_146
Hanna Patkowska. On the LC1-spaces which are Cantor or arcwise homogeneous. Fundamenta Mathematicae, Tome 142 (1993) no. 2, pp. 139-146. doi : 10.4064/fm-142-2-139-146. http://geodesic.mathdoc.fr/articles/10.4064/fm-142-2-139-146/

Cité par Sources :