Partitions of compact Hausdorff spaces
Fundamenta Mathematicae, Tome 142 (1993) no. 1, pp. 89-100
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Under the assumption that the real line cannot be covered by $ω_1$-many nowhere dense sets, it is shown that (a) no Čech-complete space can be partitioned into $ω_1$-many closed nowhere dense sets; (b) no Hausdorff continuum can be partitioned into $ω_1$-many closed sets; and (c) no compact Hausdorff space can be partitioned into $ω_1$-many closed $G_δ$-sets.
@article{10_4064_fm_142_1_89_100,
author = {Gary Gruenhage},
title = {Partitions of compact {Hausdorff} spaces},
journal = {Fundamenta Mathematicae},
pages = {89--100},
publisher = {mathdoc},
volume = {142},
number = {1},
year = {1993},
doi = {10.4064/fm-142-1-89-100},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-89-100/}
}
Gary Gruenhage. Partitions of compact Hausdorff spaces. Fundamenta Mathematicae, Tome 142 (1993) no. 1, pp. 89-100. doi: 10.4064/fm-142-1-89-100
Cité par Sources :