Partitions of compact Hausdorff spaces
Fundamenta Mathematicae, Tome 142 (1993) no. 1, pp. 89-100.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Under the assumption that the real line cannot be covered by $ω_1$-many nowhere dense sets, it is shown that (a) no Čech-complete space can be partitioned into $ω_1$-many closed nowhere dense sets; (b) no Hausdorff continuum can be partitioned into $ω_1$-many closed sets; and (c) no compact Hausdorff space can be partitioned into $ω_1$-many closed $G_δ$-sets.
DOI : 10.4064/fm-142-1-89-100

Gary Gruenhage 1

1
@article{10_4064_fm_142_1_89_100,
     author = {Gary Gruenhage},
     title = {Partitions of compact {Hausdorff} spaces},
     journal = {Fundamenta Mathematicae},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {142},
     number = {1},
     year = {1993},
     doi = {10.4064/fm-142-1-89-100},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-89-100/}
}
TY  - JOUR
AU  - Gary Gruenhage
TI  - Partitions of compact Hausdorff spaces
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 89
EP  - 100
VL  - 142
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-89-100/
DO  - 10.4064/fm-142-1-89-100
LA  - fr
ID  - 10_4064_fm_142_1_89_100
ER  - 
%0 Journal Article
%A Gary Gruenhage
%T Partitions of compact Hausdorff spaces
%J Fundamenta Mathematicae
%D 1993
%P 89-100
%V 142
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-89-100/
%R 10.4064/fm-142-1-89-100
%G fr
%F 10_4064_fm_142_1_89_100
Gary Gruenhage. Partitions of compact Hausdorff spaces. Fundamenta Mathematicae, Tome 142 (1993) no. 1, pp. 89-100. doi : 10.4064/fm-142-1-89-100. http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-89-100/

Cité par Sources :