Linear subspace of Rl without dense totally disconnected subsets
Fundamenta Mathematicae, Tome 142 (1993) no. 1, pp. 85-88.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In [1] the author showed that if there is a cardinal κ such that $2^κ=κ^+$ then there exists a completely regular space without dense 0-dimensional subspaces. This was a solution of a problem of Arkhangel'ski{ĭ}. Recently Arkhangel'skiĭ asked the author whether one can generalize this result by constructing a completely regular space without dense totally disconnected subspaces, and whether such a space can have a structure of a linear space. The purpose of this paper is to show that indeed such a space can be constructed under the additional assumption that there exists a cardinal κ such that $2^κ=κ^+$ and $2^{κ^+}=κ^{++}$.
DOI : 10.4064/fm-142-1-85-88

K. Ciesielski 1

1
@article{10_4064_fm_142_1_85_88,
     author = {K. Ciesielski},
     title = {Linear subspace of {Rl} without dense totally disconnected subsets},
     journal = {Fundamenta Mathematicae},
     pages = {85--88},
     publisher = {mathdoc},
     volume = {142},
     number = {1},
     year = {1993},
     doi = {10.4064/fm-142-1-85-88},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-85-88/}
}
TY  - JOUR
AU  - K. Ciesielski
TI  - Linear subspace of Rl without dense totally disconnected subsets
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 85
EP  - 88
VL  - 142
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-85-88/
DO  - 10.4064/fm-142-1-85-88
LA  - en
ID  - 10_4064_fm_142_1_85_88
ER  - 
%0 Journal Article
%A K. Ciesielski
%T Linear subspace of Rl without dense totally disconnected subsets
%J Fundamenta Mathematicae
%D 1993
%P 85-88
%V 142
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-85-88/
%R 10.4064/fm-142-1-85-88
%G en
%F 10_4064_fm_142_1_85_88
K. Ciesielski. Linear subspace of Rl without dense totally disconnected subsets. Fundamenta Mathematicae, Tome 142 (1993) no. 1, pp. 85-88. doi : 10.4064/fm-142-1-85-88. http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-85-88/

Cité par Sources :