Finite atomistic lattices that can be represented as lattices of quasivarieties
Fundamenta Mathematicae, Tome 142 (1993) no. 1, pp. 19-43.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a finite atomistic lattice can be represented as a lattice of quasivarieties if and only if it is isomorphic to the lattice of all subsemilattices of a finite semilattice. This settles a conjecture that appeared in the context of [11].
DOI : 10.4064/fm-142-1-19-43
Keywords: atomistic lattice, quasivariety, Mal'cev problem, equa-closure operator, semilattice

K. Adaricheva 1 ; Wiesław Dziobiak 1 ; V. Gorbunov 1

1
@article{10_4064_fm_142_1_19_43,
     author = {K. Adaricheva and Wies{\l}aw Dziobiak and V. Gorbunov},
     title = {Finite atomistic lattices that can be represented as lattices of quasivarieties},
     journal = {Fundamenta Mathematicae},
     pages = {19--43},
     publisher = {mathdoc},
     volume = {142},
     number = {1},
     year = {1993},
     doi = {10.4064/fm-142-1-19-43},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-19-43/}
}
TY  - JOUR
AU  - K. Adaricheva
AU  - Wiesław Dziobiak
AU  - V. Gorbunov
TI  - Finite atomistic lattices that can be represented as lattices of quasivarieties
JO  - Fundamenta Mathematicae
PY  - 1993
SP  - 19
EP  - 43
VL  - 142
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-19-43/
DO  - 10.4064/fm-142-1-19-43
LA  - en
ID  - 10_4064_fm_142_1_19_43
ER  - 
%0 Journal Article
%A K. Adaricheva
%A Wiesław Dziobiak
%A V. Gorbunov
%T Finite atomistic lattices that can be represented as lattices of quasivarieties
%J Fundamenta Mathematicae
%D 1993
%P 19-43
%V 142
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-19-43/
%R 10.4064/fm-142-1-19-43
%G en
%F 10_4064_fm_142_1_19_43
K. Adaricheva; Wiesław Dziobiak; V. Gorbunov. Finite atomistic lattices that can be represented as lattices of quasivarieties. Fundamenta Mathematicae, Tome 142 (1993) no. 1, pp. 19-43. doi : 10.4064/fm-142-1-19-43. http://geodesic.mathdoc.fr/articles/10.4064/fm-142-1-19-43/

Cité par Sources :