Topological spaces admitting a unique fractal structure
Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 257-268
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Each homeomorphism from the n-dimensional Sierpiński gasket into itself is a similarity map with respect to the usual metrization. Moreover, the topology of this space determines a kind of Haar measure and a canonical metric. We study spaces with similar properties. It turns out that in many cases, "fractal structure" is not a metric but a topological phenomenon.
Affiliations des auteurs :
Christoph Bandt 1 ; Teklehaimanot Retta 2
@article{10_4064_fm_141_3_257_268,
author = {Christoph Bandt and Teklehaimanot Retta},
title = {Topological spaces admitting a unique fractal structure},
journal = {Fundamenta Mathematicae},
pages = {257--268},
publisher = {mathdoc},
volume = {141},
number = {3},
year = {1992},
doi = {10.4064/fm-141-3-257-268},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-141-3-257-268/}
}
TY - JOUR AU - Christoph Bandt AU - Teklehaimanot Retta TI - Topological spaces admitting a unique fractal structure JO - Fundamenta Mathematicae PY - 1992 SP - 257 EP - 268 VL - 141 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-141-3-257-268/ DO - 10.4064/fm-141-3-257-268 LA - en ID - 10_4064_fm_141_3_257_268 ER -
%0 Journal Article %A Christoph Bandt %A Teklehaimanot Retta %T Topological spaces admitting a unique fractal structure %J Fundamenta Mathematicae %D 1992 %P 257-268 %V 141 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-141-3-257-268/ %R 10.4064/fm-141-3-257-268 %G en %F 10_4064_fm_141_3_257_268
Christoph Bandt; Teklehaimanot Retta. Topological spaces admitting a unique fractal structure. Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 257-268. doi: 10.4064/fm-141-3-257-268
Cité par Sources :