Algebras of Borel measurable functions
Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 229-242
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a continuum and consider the following three conditions: 1) Z is a planar AR; 2) cut points of Z have component number two; 3) any true cyclic element of Z contains at most two cut points of Z. Then any size level for an arc satisfies 1)-3) and conversely, if Z satisfies 1)-3), then Z is a diameter level for some arc.
@article{10_4064_fm_141_3_229_242,
author = {Micha{\l} Morayne},
title = {Algebras of {Borel} measurable functions},
journal = {Fundamenta Mathematicae},
pages = {229--242},
year = {1992},
volume = {141},
number = {3},
doi = {10.4064/fm-141-3-229-242},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-141-3-229-242/}
}
Michał Morayne. Algebras of Borel measurable functions. Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 229-242. doi: 10.4064/fm-141-3-229-242
Cité par Sources :