On soluble groups of automorphisms of nonorientable Klein surfaces
Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 215-227
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q-1) elements and that this bound is sharp for infinitely many values of q.
Keywords:
Riemann surfaces, Klein surfaces, automorphism groups, soluble groups
Affiliations des auteurs :
G. Gromadzki 1
@article{10_4064_fm_141_3_215_227,
author = {G. Gromadzki},
title = {On soluble groups of automorphisms of nonorientable {Klein} surfaces},
journal = {Fundamenta Mathematicae},
pages = {215--227},
year = {1992},
volume = {141},
number = {3},
doi = {10.4064/fm-141-3-215-227},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-141-3-215-227/}
}
TY - JOUR AU - G. Gromadzki TI - On soluble groups of automorphisms of nonorientable Klein surfaces JO - Fundamenta Mathematicae PY - 1992 SP - 215 EP - 227 VL - 141 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-141-3-215-227/ DO - 10.4064/fm-141-3-215-227 LA - en ID - 10_4064_fm_141_3_215_227 ER -
G. Gromadzki. On soluble groups of automorphisms of nonorientable Klein surfaces. Fundamenta Mathematicae, Tome 141 (1992) no. 3, pp. 215-227. doi: 10.4064/fm-141-3-215-227
Cité par Sources :