Opérations de Hausdorff itérées et réunions croissantes de compacts
Fundamenta Mathematicae, Tome 141 (1992) no. 2, pp. 169-194
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In this paper, motivated by questions in Harmonic Analysis, we study the operation of (countable) increasing union, and show it is not idempotent: $ω_1$ iterations are needed in general to obtain the closure of a class under this operation.
Increasing union is a particular Hausdorff operation, and we present the combinatorial tools which allow to study the power of various Hausdorff operations, and of their iterates. Besides countable increasing union, we study in detail a related Hausdorff operation, which preserves compactness.
@article{10_4064_fm_141_2_169_194,
author = {Sylvain Kahane},
title = {Op\'erations de {Hausdorff} it\'er\'ees et r\'eunions croissantes de compacts},
journal = {Fundamenta Mathematicae},
pages = {169--194},
year = {1992},
volume = {141},
number = {2},
doi = {10.4064/fm-141-2-169-194},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-141-2-169-194/}
}
TY - JOUR AU - Sylvain Kahane TI - Opérations de Hausdorff itérées et réunions croissantes de compacts JO - Fundamenta Mathematicae PY - 1992 SP - 169 EP - 194 VL - 141 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-141-2-169-194/ DO - 10.4064/fm-141-2-169-194 LA - fr ID - 10_4064_fm_141_2_169_194 ER -
Sylvain Kahane. Opérations de Hausdorff itérées et réunions croissantes de compacts. Fundamenta Mathematicae, Tome 141 (1992) no. 2, pp. 169-194. doi: 10.4064/fm-141-2-169-194
Cité par Sources :