The Vietoris system in strong shape and strong homology
Fundamenta Mathematicae, Tome 141 (1992) no. 2, pp. 147-168
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the Vietoris system of a space is isomorphic to a strong expansion of that space in the Steenrod homotopy category, and from this we derive a simple description of strong homology. It is proved that in ZFC strong homology does not have compact supports, and that enforcing compact supports by taking limits leads to a homology functor that does not factor over the strong shape category. For compact Hausdorff spaces strong homology is proved to be isomorphic to Massey's homology.
Keywords:
vietoris nerve, Steenrod homotopy category, strong shape theory, strong homology, compact supports
Affiliations des auteurs :
Bernd Günther 1
@article{10_4064_fm_141_2_147_168,
author = {Bernd G\"unther},
title = {The {Vietoris} system in strong shape and strong homology},
journal = {Fundamenta Mathematicae},
pages = {147--168},
publisher = {mathdoc},
volume = {141},
number = {2},
year = {1992},
doi = {10.4064/fm-141-2-147-168},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-141-2-147-168/}
}
TY - JOUR AU - Bernd Günther TI - The Vietoris system in strong shape and strong homology JO - Fundamenta Mathematicae PY - 1992 SP - 147 EP - 168 VL - 141 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-141-2-147-168/ DO - 10.4064/fm-141-2-147-168 LA - en ID - 10_4064_fm_141_2_147_168 ER -
Bernd Günther. The Vietoris system in strong shape and strong homology. Fundamenta Mathematicae, Tome 141 (1992) no. 2, pp. 147-168. doi: 10.4064/fm-141-2-147-168
Cité par Sources :