The Vietoris system in strong shape and strong homology
Fundamenta Mathematicae, Tome 141 (1992) no. 2, pp. 147-168.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the Vietoris system of a space is isomorphic to a strong expansion of that space in the Steenrod homotopy category, and from this we derive a simple description of strong homology. It is proved that in ZFC strong homology does not have compact supports, and that enforcing compact supports by taking limits leads to a homology functor that does not factor over the strong shape category. For compact Hausdorff spaces strong homology is proved to be isomorphic to Massey's homology.
DOI : 10.4064/fm-141-2-147-168
Keywords: vietoris nerve, Steenrod homotopy category, strong shape theory, strong homology, compact supports

Bernd Günther 1

1
@article{10_4064_fm_141_2_147_168,
     author = {Bernd G\"unther},
     title = {The {Vietoris} system in strong shape and strong homology},
     journal = {Fundamenta Mathematicae},
     pages = {147--168},
     publisher = {mathdoc},
     volume = {141},
     number = {2},
     year = {1992},
     doi = {10.4064/fm-141-2-147-168},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-141-2-147-168/}
}
TY  - JOUR
AU  - Bernd Günther
TI  - The Vietoris system in strong shape and strong homology
JO  - Fundamenta Mathematicae
PY  - 1992
SP  - 147
EP  - 168
VL  - 141
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-141-2-147-168/
DO  - 10.4064/fm-141-2-147-168
LA  - en
ID  - 10_4064_fm_141_2_147_168
ER  - 
%0 Journal Article
%A Bernd Günther
%T The Vietoris system in strong shape and strong homology
%J Fundamenta Mathematicae
%D 1992
%P 147-168
%V 141
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-141-2-147-168/
%R 10.4064/fm-141-2-147-168
%G en
%F 10_4064_fm_141_2_147_168
Bernd Günther. The Vietoris system in strong shape and strong homology. Fundamenta Mathematicae, Tome 141 (1992) no. 2, pp. 147-168. doi : 10.4064/fm-141-2-147-168. http://geodesic.mathdoc.fr/articles/10.4064/fm-141-2-147-168/

Cité par Sources :