Representing free Boolean algebras
Fundamenta Mathematicae, Tome 141 (1992) no. 1, pp. 21-30.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Partitioner algebras are defined in [2] and are natural tools for studying the properties of maximal almost disjoint families of subsets of ω. In this paper we investigate which free algebras can be represented as partitioner algebras or as subalgebras of partitioner algebras. In so doing we answer a question raised in [2] by showing that the free algebra with $ℵ_1$ generators is represented. It was shown in [2] that it is consistent that the free Boolean algebra of size continuum is not a subalgebra of any partitioner algebra.
DOI : 10.4064/fm-141-1-21-30

Alan Dow 1 ; P. Nyikos 1

1
@article{10_4064_fm_141_1_21_30,
     author = {Alan Dow and P. Nyikos},
     title = {Representing free {Boolean} algebras},
     journal = {Fundamenta Mathematicae},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {141},
     number = {1},
     year = {1992},
     doi = {10.4064/fm-141-1-21-30},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-141-1-21-30/}
}
TY  - JOUR
AU  - Alan Dow
AU  - P. Nyikos
TI  - Representing free Boolean algebras
JO  - Fundamenta Mathematicae
PY  - 1992
SP  - 21
EP  - 30
VL  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-141-1-21-30/
DO  - 10.4064/fm-141-1-21-30
LA  - en
ID  - 10_4064_fm_141_1_21_30
ER  - 
%0 Journal Article
%A Alan Dow
%A P. Nyikos
%T Representing free Boolean algebras
%J Fundamenta Mathematicae
%D 1992
%P 21-30
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-141-1-21-30/
%R 10.4064/fm-141-1-21-30
%G en
%F 10_4064_fm_141_1_21_30
Alan Dow; P. Nyikos. Representing free Boolean algebras. Fundamenta Mathematicae, Tome 141 (1992) no. 1, pp. 21-30. doi : 10.4064/fm-141-1-21-30. http://geodesic.mathdoc.fr/articles/10.4064/fm-141-1-21-30/

Cité par Sources :