Classification of self-dual torsion-free LCA groups
Fundamenta Mathematicae, Tome 140 (1991) no. 3, pp. 255-278.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In this paper we seek to describe the structure of self-dual torsion-free LCA groups. We first present a proof of the structure theorem of self-dual torsion-free metric LCA groups. Then we generalize the structure theorem to a larger class of self-dual torsion-free LCA groups. We also give a characterization of torsion-free divisible LCA groups. Consequently, a complete classification of self-dual divisible LCA groups is obtained; and any self-dual torsion-free LCA group can be regarded as an open subgroup of a well-understood torsion-free divisible LCA group.
DOI : 10.4064/fm-140-3-255-278

Sheng L. Wu 1

1 Department of Mathematics University of Oregon Eugene, Oregon 97403 U.S.A.
@article{10_4064_fm_140_3_255_278,
     author = {Sheng L.  Wu},
     title = {Classification of self-dual torsion-free {LCA} groups},
     journal = {Fundamenta Mathematicae},
     pages = {255--278},
     publisher = {mathdoc},
     volume = {140},
     number = {3},
     year = {1991},
     doi = {10.4064/fm-140-3-255-278},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-3-255-278/}
}
TY  - JOUR
AU  - Sheng L.  Wu
TI  - Classification of self-dual torsion-free LCA groups
JO  - Fundamenta Mathematicae
PY  - 1991
SP  - 255
EP  - 278
VL  - 140
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-3-255-278/
DO  - 10.4064/fm-140-3-255-278
LA  - en
ID  - 10_4064_fm_140_3_255_278
ER  - 
%0 Journal Article
%A Sheng L.  Wu
%T Classification of self-dual torsion-free LCA groups
%J Fundamenta Mathematicae
%D 1991
%P 255-278
%V 140
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-140-3-255-278/
%R 10.4064/fm-140-3-255-278
%G en
%F 10_4064_fm_140_3_255_278
Sheng L.  Wu. Classification of self-dual torsion-free LCA groups. Fundamenta Mathematicae, Tome 140 (1991) no. 3, pp. 255-278. doi : 10.4064/fm-140-3-255-278. http://geodesic.mathdoc.fr/articles/10.4064/fm-140-3-255-278/

Cité par Sources :