On weakly infinite-dimensional subspaces
Fundamenta Mathematicae, Tome 140 (1991) no. 3, pp. 225-235
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We will construct weakly infinite-dimensional (in the sense of Y. Smirnov) spaces X and Y such that Y contains X topologically and $dim Y = ω_0$ and $dim X = ω_0 + 1$. Consequently, the subspace theorem does not hold for the transfinite dimension dim for weakly infinite-dimensional spaces.
Keywords:
weakly infinite-dimensional, transfinite dimension
Affiliations des auteurs :
Piet Borst 1
@article{10_4064_fm_140_3_225_235,
author = {Piet Borst},
title = {On weakly infinite-dimensional subspaces},
journal = {Fundamenta Mathematicae},
pages = {225--235},
publisher = {mathdoc},
volume = {140},
number = {3},
year = {1991},
doi = {10.4064/fm-140-3-225-235},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-3-225-235/}
}
Piet Borst. On weakly infinite-dimensional subspaces. Fundamenta Mathematicae, Tome 140 (1991) no. 3, pp. 225-235. doi: 10.4064/fm-140-3-225-235
Cité par Sources :