On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem
Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 191-196.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $f,g:M_1 → M_2$ be maps where $M_1$ and $M_2$ are connected triangulable oriented n-manifolds so that the set of coincidences $C_{f,g}= {x ∈ M_1 | f(x)=g(x)}$ is compact in $M_1$. We define a Nielsen equivalence relation on $C_{f,g}$ and assign the coincidence index to each Nielsen coincidence class. In this note, we show that, for n ≥ 3, if $M_2= \widetilde M_2/K$ where $\widetilde M_2$ is a connected simply connected topological group and K is a discrete subgroup then all the Nielsen coincidence classes of f and g have the same coincidence index. In particular, when $M_1$ and $M_2$ are compact, f and g are deformable to be coincidence free if the Lefschetz coincidence number L(f,g) vanishes.
DOI : 10.4064/fm-140-2-191-196
Keywords: fixed points, coincidences, roots, Lefschetz number, Nielsen number

Peter Wong 1

1
@article{10_4064_fm_140_2_191_196,
     author = {Peter Wong},
     title = {On the computation of the {Nielsen} numbers and the converse of the {Lefschetz} coincidence theorem},
     journal = {Fundamenta Mathematicae},
     pages = {191--196},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {1991},
     doi = {10.4064/fm-140-2-191-196},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-191-196/}
}
TY  - JOUR
AU  - Peter Wong
TI  - On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem
JO  - Fundamenta Mathematicae
PY  - 1991
SP  - 191
EP  - 196
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-191-196/
DO  - 10.4064/fm-140-2-191-196
LA  - en
ID  - 10_4064_fm_140_2_191_196
ER  - 
%0 Journal Article
%A Peter Wong
%T On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem
%J Fundamenta Mathematicae
%D 1991
%P 191-196
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-191-196/
%R 10.4064/fm-140-2-191-196
%G en
%F 10_4064_fm_140_2_191_196
Peter Wong. On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem. Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 191-196. doi : 10.4064/fm-140-2-191-196. http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-191-196/

Cité par Sources :