On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem
Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 191-196
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f,g:M_1 → M_2$ be maps where $M_1$ and $M_2$ are connected triangulable oriented n-manifolds so that the set of coincidences $C_{f,g}= {x ∈ M_1 | f(x)=g(x)}$ is compact in $M_1$. We define a Nielsen equivalence relation on $C_{f,g}$ and assign the coincidence index to each Nielsen coincidence class. In this note, we show that, for n ≥ 3, if $M_2= \widetilde M_2/K$ where $\widetilde M_2$ is a connected simply connected topological group and K is a discrete subgroup then all the Nielsen coincidence classes of f and g have the same coincidence index. In particular, when $M_1$ and $M_2$ are compact, f and g are deformable to be coincidence free if the Lefschetz coincidence number L(f,g) vanishes.
Keywords:
fixed points, coincidences, roots, Lefschetz number, Nielsen number
Affiliations des auteurs :
Peter Wong 1
@article{10_4064_fm_140_2_191_196,
author = {Peter Wong},
title = {On the computation of the {Nielsen} numbers and the converse of the {Lefschetz} coincidence theorem},
journal = {Fundamenta Mathematicae},
pages = {191--196},
publisher = {mathdoc},
volume = {140},
number = {2},
year = {1991},
doi = {10.4064/fm-140-2-191-196},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-191-196/}
}
TY - JOUR AU - Peter Wong TI - On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem JO - Fundamenta Mathematicae PY - 1991 SP - 191 EP - 196 VL - 140 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-191-196/ DO - 10.4064/fm-140-2-191-196 LA - en ID - 10_4064_fm_140_2_191_196 ER -
%0 Journal Article %A Peter Wong %T On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem %J Fundamenta Mathematicae %D 1991 %P 191-196 %V 140 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-191-196/ %R 10.4064/fm-140-2-191-196 %G en %F 10_4064_fm_140_2_191_196
Peter Wong. On the computation of the Nielsen numbers and the converse of the Lefschetz coincidence theorem. Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 191-196. doi: 10.4064/fm-140-2-191-196
Cité par Sources :