Definable hereditary families in the projective hierarchy
Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 183-189
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that if ℱ is a hereditary family of subsets of $ω^ω$ satisfying certain definable conditions, then the $Δ_1^1$ reals are precisely the reals α such that ${β:α ∈ Δ_1^1(β)} ∉ ∈ ℱ$. This generalizes the results for measure and category. Appropriate generalization to the higher levels of the projective hierarchy is obtained under Projective Determinacy. Application of this result to the $Q_{2n+1}$-encodable reals is also shown.
@article{10_4064_fm_140_2_183_189,
author = {R. Barua and V. Srivatsa},
title = {Definable hereditary families in the projective hierarchy},
journal = {Fundamenta Mathematicae},
pages = {183--189},
publisher = {mathdoc},
volume = {140},
number = {2},
year = {1991},
doi = {10.4064/fm-140-2-183-189},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-183-189/}
}
TY - JOUR AU - R. Barua AU - V. Srivatsa TI - Definable hereditary families in the projective hierarchy JO - Fundamenta Mathematicae PY - 1991 SP - 183 EP - 189 VL - 140 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-183-189/ DO - 10.4064/fm-140-2-183-189 LA - en ID - 10_4064_fm_140_2_183_189 ER -
%0 Journal Article %A R. Barua %A V. Srivatsa %T Definable hereditary families in the projective hierarchy %J Fundamenta Mathematicae %D 1991 %P 183-189 %V 140 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-183-189/ %R 10.4064/fm-140-2-183-189 %G en %F 10_4064_fm_140_2_183_189
R. Barua; V. Srivatsa. Definable hereditary families in the projective hierarchy. Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 183-189. doi: 10.4064/fm-140-2-183-189
Cité par Sources :