On reflection of stationary sets
Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 175-181.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that there are stationary subsets of uncountable spaces which do not reflect.
DOI : 10.4064/fm-140-2-175-181

Q. Feng 1 ; Menachem Magidor 1

1
@article{10_4064_fm_140_2_175_181,
     author = {Q. Feng and Menachem Magidor},
     title = {On reflection of stationary sets},
     journal = {Fundamenta Mathematicae},
     pages = {175--181},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {1991},
     doi = {10.4064/fm-140-2-175-181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-175-181/}
}
TY  - JOUR
AU  - Q. Feng
AU  - Menachem Magidor
TI  - On reflection of stationary sets
JO  - Fundamenta Mathematicae
PY  - 1991
SP  - 175
EP  - 181
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-175-181/
DO  - 10.4064/fm-140-2-175-181
LA  - en
ID  - 10_4064_fm_140_2_175_181
ER  - 
%0 Journal Article
%A Q. Feng
%A Menachem Magidor
%T On reflection of stationary sets
%J Fundamenta Mathematicae
%D 1991
%P 175-181
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-175-181/
%R 10.4064/fm-140-2-175-181
%G en
%F 10_4064_fm_140_2_175_181
Q. Feng; Menachem Magidor. On reflection of stationary sets. Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 175-181. doi : 10.4064/fm-140-2-175-181. http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-175-181/

Cité par Sources :