On reflection of stationary sets
Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 175-181
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that there are stationary subsets of uncountable spaces which do not reflect.
Affiliations des auteurs :
Q. Feng 1 ; Menachem Magidor 1
@article{10_4064_fm_140_2_175_181,
author = {Q. Feng and Menachem Magidor},
title = {On reflection of stationary sets},
journal = {Fundamenta Mathematicae},
pages = {175--181},
publisher = {mathdoc},
volume = {140},
number = {2},
year = {1991},
doi = {10.4064/fm-140-2-175-181},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-175-181/}
}
TY - JOUR AU - Q. Feng AU - Menachem Magidor TI - On reflection of stationary sets JO - Fundamenta Mathematicae PY - 1991 SP - 175 EP - 181 VL - 140 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-2-175-181/ DO - 10.4064/fm-140-2-175-181 LA - en ID - 10_4064_fm_140_2_175_181 ER -
Q. Feng; Menachem Magidor. On reflection of stationary sets. Fundamenta Mathematicae, Tome 140 (1991) no. 2, pp. 175-181. doi: 10.4064/fm-140-2-175-181
Cité par Sources :