We investigate Jarník's points for a real function f defined in ℝ, i.e. points x for which $ap_{y → x}|(f(y)-f(x))/(y-x)|=+∞$. In 1970, Berman has proved that the set $J_f$ of all Jarník's points for a path f of the one-dimensional Brownian motion is the whole ℝ almost surely. We give a simple explicit construction of a continuous function f with $J_f = $ ℝ. The main result of our paper says that for a typical continuous function f on [0,1] the set $J_f$ is c-dense in [0,1].
@article{10_4064_fm_140_1_87_97,
author = {Jan Mal\'y and Lud\v{e}k Zaj{\i}́\v{c}ek},
title = {Approximate differentiation: {Jarn{\'\i}k} points},
journal = {Fundamenta Mathematicae},
pages = {87--97},
year = {1991},
volume = {140},
number = {1},
doi = {10.4064/fm-140-1-87-97},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-1-87-97/}
}
TY - JOUR
AU - Jan Malý
AU - Luděk Zajı́ček
TI - Approximate differentiation: Jarník points
JO - Fundamenta Mathematicae
PY - 1991
SP - 87
EP - 97
VL - 140
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-1-87-97/
DO - 10.4064/fm-140-1-87-97
LA - en
ID - 10_4064_fm_140_1_87_97
ER -