Approximate differentiation: Jarník points
Fundamenta Mathematicae, Tome 140 (1991) no. 1, pp. 87-97.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate Jarník's points for a real function f defined in ℝ, i.e. points x for which $ap_{y → x}|(f(y)-f(x))/(y-x)|=+∞$. In 1970, Berman has proved that the set $J_f$ of all Jarník's points for a path f of the one-dimensional Brownian motion is the whole ℝ almost surely. We give a simple explicit construction of a continuous function f with $J_f = $ ℝ. The main result of our paper says that for a typical continuous function f on [0,1] the set $J_f$ is c-dense in [0,1].
DOI : 10.4064/fm-140-1-87-97

Jan Malý 1 ; Luděk Zajı́ček 1

1 Faculty of Mathematics and Physics (KMA) Charles Yniversity Sokolovská 83 18600 Praha 8, Czechoslovakia
@article{10_4064_fm_140_1_87_97,
     author = {Jan Mal\'y and Lud\v{e}k Zaj{\i}́\v{c}ek},
     title = {Approximate differentiation: {Jarn{\'\i}k} points},
     journal = {Fundamenta Mathematicae},
     pages = {87--97},
     publisher = {mathdoc},
     volume = {140},
     number = {1},
     year = {1991},
     doi = {10.4064/fm-140-1-87-97},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-1-87-97/}
}
TY  - JOUR
AU  - Jan Malý
AU  - Luděk Zajı́ček
TI  - Approximate differentiation: Jarník points
JO  - Fundamenta Mathematicae
PY  - 1991
SP  - 87
EP  - 97
VL  - 140
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-1-87-97/
DO  - 10.4064/fm-140-1-87-97
LA  - en
ID  - 10_4064_fm_140_1_87_97
ER  - 
%0 Journal Article
%A Jan Malý
%A Luděk Zajı́ček
%T Approximate differentiation: Jarník points
%J Fundamenta Mathematicae
%D 1991
%P 87-97
%V 140
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-140-1-87-97/
%R 10.4064/fm-140-1-87-97
%G en
%F 10_4064_fm_140_1_87_97
Jan Malý; Luděk Zajı́ček. Approximate differentiation: Jarník points. Fundamenta Mathematicae, Tome 140 (1991) no. 1, pp. 87-97. doi : 10.4064/fm-140-1-87-97. http://geodesic.mathdoc.fr/articles/10.4064/fm-140-1-87-97/

Cité par Sources :