A new proof of Kelley's Theorem
Fundamenta Mathematicae, Tome 140 (1991) no. 1, pp. 63-67.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Kelley's Theorem is a purely combinatorial characterization of measure algebras. We first apply linear programming to exhibit the duality between measures and this characterization for finite algebras. Then we give a new proof of the Theorem using methods from nonstandard analysis.
DOI : 10.4064/fm-140-1-63-67

Siu-Ah Ng 1

1 Department of Pure Mathematics University of Hull Hull, HU6 7RX England
@article{10_4064_fm_140_1_63_67,
     author = {Siu-Ah Ng},
     title = {A new proof of {Kelley's} {Theorem}},
     journal = {Fundamenta Mathematicae},
     pages = {63--67},
     publisher = {mathdoc},
     volume = {140},
     number = {1},
     year = {1991},
     doi = {10.4064/fm-140-1-63-67},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-1-63-67/}
}
TY  - JOUR
AU  - Siu-Ah Ng
TI  - A new proof of Kelley's Theorem
JO  - Fundamenta Mathematicae
PY  - 1991
SP  - 63
EP  - 67
VL  - 140
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-140-1-63-67/
DO  - 10.4064/fm-140-1-63-67
LA  - en
ID  - 10_4064_fm_140_1_63_67
ER  - 
%0 Journal Article
%A Siu-Ah Ng
%T A new proof of Kelley's Theorem
%J Fundamenta Mathematicae
%D 1991
%P 63-67
%V 140
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-140-1-63-67/
%R 10.4064/fm-140-1-63-67
%G en
%F 10_4064_fm_140_1_63_67
Siu-Ah Ng. A new proof of Kelley's Theorem. Fundamenta Mathematicae, Tome 140 (1991) no. 1, pp. 63-67. doi : 10.4064/fm-140-1-63-67. http://geodesic.mathdoc.fr/articles/10.4064/fm-140-1-63-67/

Cité par Sources :