On D-dimension of metrizable spaces
Fundamenta Mathematicae, Tome 140 (1991) no. 1, pp. 35-48
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For every cardinal τ and every ordinal α, we construct a metrizable space $M_α(τ)$ and a strongly countable-dimensional compact space $Z_α(τ)$ of weight τ such that $D(M_α(τ)) ≤ α$, $D(Z_α(τ)) ≤ α$ and each metrizable space X of weight τ such that D(X) ≤ α is homeomorphic to a subspace of $M_α(τ)$ and to a subspace of $Z_{α+1}(τ)$.
@article{10_4064_fm_140_1_35_48,
author = {Wojciech Olszewski},
title = {On {D-dimension} of metrizable spaces},
journal = {Fundamenta Mathematicae},
pages = {35--48},
publisher = {mathdoc},
volume = {140},
number = {1},
year = {1991},
doi = {10.4064/fm-140-1-35-48},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-140-1-35-48/}
}
Wojciech Olszewski. On D-dimension of metrizable spaces. Fundamenta Mathematicae, Tome 140 (1991) no. 1, pp. 35-48. doi: 10.4064/fm-140-1-35-48
Cité par Sources :