The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set
Fundamenta Mathematicae, Tome 138 (1991) no. 1, pp. 13-19.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-138-1-13-19

Matthew Foreman 1 ; Friedrich Wehrung 1

1
@article{10_4064_fm_138_1_13_19,
     author = {Matthew Foreman and Friedrich Wehrung},
     title = {The {Hahn-Banach} theorem implies the existence of a {non-Lebesgue} measurable set},
     journal = {Fundamenta Mathematicae},
     pages = {13--19},
     publisher = {mathdoc},
     volume = {138},
     number = {1},
     year = {1991},
     doi = {10.4064/fm-138-1-13-19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-138-1-13-19/}
}
TY  - JOUR
AU  - Matthew Foreman
AU  - Friedrich Wehrung
TI  - The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set
JO  - Fundamenta Mathematicae
PY  - 1991
SP  - 13
EP  - 19
VL  - 138
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-138-1-13-19/
DO  - 10.4064/fm-138-1-13-19
LA  - en
ID  - 10_4064_fm_138_1_13_19
ER  - 
%0 Journal Article
%A Matthew Foreman
%A Friedrich Wehrung
%T The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set
%J Fundamenta Mathematicae
%D 1991
%P 13-19
%V 138
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-138-1-13-19/
%R 10.4064/fm-138-1-13-19
%G en
%F 10_4064_fm_138_1_13_19
Matthew Foreman; Friedrich Wehrung. The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set. Fundamenta Mathematicae, Tome 138 (1991) no. 1, pp. 13-19. doi : 10.4064/fm-138-1-13-19. http://geodesic.mathdoc.fr/articles/10.4064/fm-138-1-13-19/

Cité par Sources :