The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set
Fundamenta Mathematicae, Tome 138 (1991) no. 1, pp. 13-19
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Affiliations des auteurs :
Matthew Foreman 1 ; Friedrich Wehrung 1
@article{10_4064_fm_138_1_13_19,
author = {Matthew Foreman and Friedrich Wehrung},
title = {The {Hahn-Banach} theorem implies the existence of a {non-Lebesgue} measurable set},
journal = {Fundamenta Mathematicae},
pages = {13--19},
year = {1991},
volume = {138},
number = {1},
doi = {10.4064/fm-138-1-13-19},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-138-1-13-19/}
}
TY - JOUR AU - Matthew Foreman AU - Friedrich Wehrung TI - The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set JO - Fundamenta Mathematicae PY - 1991 SP - 13 EP - 19 VL - 138 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-138-1-13-19/ DO - 10.4064/fm-138-1-13-19 LA - en ID - 10_4064_fm_138_1_13_19 ER -
%0 Journal Article %A Matthew Foreman %A Friedrich Wehrung %T The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set %J Fundamenta Mathematicae %D 1991 %P 13-19 %V 138 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-138-1-13-19/ %R 10.4064/fm-138-1-13-19 %G en %F 10_4064_fm_138_1_13_19
Matthew Foreman; Friedrich Wehrung. The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set. Fundamenta Mathematicae, Tome 138 (1991) no. 1, pp. 13-19. doi: 10.4064/fm-138-1-13-19
Cité par Sources :