An n-dimensional compactum which remains n-dimensional after removing all Cantor n-manifolds
Fundamenta Mathematicae, Tome 136 (1990) no. 2, pp. 127-131.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-136-2-127-131

Roman Pol 1

1
@article{10_4064_fm_136_2_127_131,
     author = {Roman Pol},
     title = {An n-dimensional compactum which remains n-dimensional after removing all {Cantor} n-manifolds},
     journal = {Fundamenta Mathematicae},
     pages = {127--131},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {1990},
     doi = {10.4064/fm-136-2-127-131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-136-2-127-131/}
}
TY  - JOUR
AU  - Roman Pol
TI  - An n-dimensional compactum which remains n-dimensional after removing all Cantor n-manifolds
JO  - Fundamenta Mathematicae
PY  - 1990
SP  - 127
EP  - 131
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-136-2-127-131/
DO  - 10.4064/fm-136-2-127-131
LA  - en
ID  - 10_4064_fm_136_2_127_131
ER  - 
%0 Journal Article
%A Roman Pol
%T An n-dimensional compactum which remains n-dimensional after removing all Cantor n-manifolds
%J Fundamenta Mathematicae
%D 1990
%P 127-131
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-136-2-127-131/
%R 10.4064/fm-136-2-127-131
%G en
%F 10_4064_fm_136_2_127_131
Roman Pol. An n-dimensional compactum which remains n-dimensional after removing all Cantor n-manifolds. Fundamenta Mathematicae, Tome 136 (1990) no. 2, pp. 127-131. doi : 10.4064/fm-136-2-127-131. http://geodesic.mathdoc.fr/articles/10.4064/fm-136-2-127-131/

Cité par Sources :