An n-dimensional compactum which remains n-dimensional after removing all Cantor n-manifolds
Fundamenta Mathematicae, Tome 136 (1990) no. 2, pp. 127-131
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_136_2_127_131,
author = {Roman Pol},
title = {An n-dimensional compactum which remains n-dimensional after removing all {Cantor} n-manifolds},
journal = {Fundamenta Mathematicae},
pages = {127--131},
year = {1990},
volume = {136},
number = {2},
doi = {10.4064/fm-136-2-127-131},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-136-2-127-131/}
}
TY - JOUR AU - Roman Pol TI - An n-dimensional compactum which remains n-dimensional after removing all Cantor n-manifolds JO - Fundamenta Mathematicae PY - 1990 SP - 127 EP - 131 VL - 136 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-136-2-127-131/ DO - 10.4064/fm-136-2-127-131 LA - en ID - 10_4064_fm_136_2_127_131 ER -
%0 Journal Article %A Roman Pol %T An n-dimensional compactum which remains n-dimensional after removing all Cantor n-manifolds %J Fundamenta Mathematicae %D 1990 %P 127-131 %V 136 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-136-2-127-131/ %R 10.4064/fm-136-2-127-131 %G en %F 10_4064_fm_136_2_127_131
Roman Pol. An n-dimensional compactum which remains n-dimensional after removing all Cantor n-manifolds. Fundamenta Mathematicae, Tome 136 (1990) no. 2, pp. 127-131. doi: 10.4064/fm-136-2-127-131
Cité par Sources :