Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_136_2_127_131, author = {Roman Pol}, title = {An n-dimensional compactum which remains n-dimensional after removing all {Cantor} n-manifolds}, journal = {Fundamenta Mathematicae}, pages = {127--131}, publisher = {mathdoc}, volume = {136}, number = {2}, year = {1990}, doi = {10.4064/fm-136-2-127-131}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-136-2-127-131/} }
TY - JOUR AU - Roman Pol TI - An n-dimensional compactum which remains n-dimensional after removing all Cantor n-manifolds JO - Fundamenta Mathematicae PY - 1990 SP - 127 EP - 131 VL - 136 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-136-2-127-131/ DO - 10.4064/fm-136-2-127-131 LA - en ID - 10_4064_fm_136_2_127_131 ER -
%0 Journal Article %A Roman Pol %T An n-dimensional compactum which remains n-dimensional after removing all Cantor n-manifolds %J Fundamenta Mathematicae %D 1990 %P 127-131 %V 136 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-136-2-127-131/ %R 10.4064/fm-136-2-127-131 %G en %F 10_4064_fm_136_2_127_131
Roman Pol. An n-dimensional compactum which remains n-dimensional after removing all Cantor n-manifolds. Fundamenta Mathematicae, Tome 136 (1990) no. 2, pp. 127-131. doi : 10.4064/fm-136-2-127-131. http://geodesic.mathdoc.fr/articles/10.4064/fm-136-2-127-131/
Cité par Sources :