When a subset of $E^n$ locally lies on a sphere
Fundamenta Mathematicae, Tome 133 (1989) no. 2, pp. 101-112.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-133-2-101-112

L. Loveland 1

1
@article{10_4064_fm_133_2_101_112,
     author = {L. Loveland},
     title = {When a subset of $E^n$ locally lies on a sphere},
     journal = {Fundamenta Mathematicae},
     pages = {101--112},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {1989},
     doi = {10.4064/fm-133-2-101-112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-133-2-101-112/}
}
TY  - JOUR
AU  - L. Loveland
TI  - When a subset of $E^n$ locally lies on a sphere
JO  - Fundamenta Mathematicae
PY  - 1989
SP  - 101
EP  - 112
VL  - 133
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-133-2-101-112/
DO  - 10.4064/fm-133-2-101-112
LA  - en
ID  - 10_4064_fm_133_2_101_112
ER  - 
%0 Journal Article
%A L. Loveland
%T When a subset of $E^n$ locally lies on a sphere
%J Fundamenta Mathematicae
%D 1989
%P 101-112
%V 133
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-133-2-101-112/
%R 10.4064/fm-133-2-101-112
%G en
%F 10_4064_fm_133_2_101_112
L. Loveland. When a subset of $E^n$ locally lies on a sphere. Fundamenta Mathematicae, Tome 133 (1989) no. 2, pp. 101-112. doi : 10.4064/fm-133-2-101-112. http://geodesic.mathdoc.fr/articles/10.4064/fm-133-2-101-112/

Cité par Sources :