The smallest number of free closed filters
Fundamenta Mathematicae, Tome 131 (1988) no. 3, pp. 215-221.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-131-3-215-221

Jan Pelant 1 ; Petr Simon 1 ; Jerry Vaughan 1

1
@article{10_4064_fm_131_3_215_221,
     author = {Jan Pelant and Petr Simon and Jerry Vaughan},
     title = {The smallest number of free closed filters},
     journal = {Fundamenta Mathematicae},
     pages = {215--221},
     publisher = {mathdoc},
     volume = {131},
     number = {3},
     year = {1988},
     doi = {10.4064/fm-131-3-215-221},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-131-3-215-221/}
}
TY  - JOUR
AU  - Jan Pelant
AU  - Petr Simon
AU  - Jerry Vaughan
TI  - The smallest number of free closed filters
JO  - Fundamenta Mathematicae
PY  - 1988
SP  - 215
EP  - 221
VL  - 131
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-131-3-215-221/
DO  - 10.4064/fm-131-3-215-221
LA  - en
ID  - 10_4064_fm_131_3_215_221
ER  - 
%0 Journal Article
%A Jan Pelant
%A Petr Simon
%A Jerry Vaughan
%T The smallest number of free closed filters
%J Fundamenta Mathematicae
%D 1988
%P 215-221
%V 131
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-131-3-215-221/
%R 10.4064/fm-131-3-215-221
%G en
%F 10_4064_fm_131_3_215_221
Jan Pelant; Petr Simon; Jerry Vaughan. The smallest number of free closed filters. Fundamenta Mathematicae, Tome 131 (1988) no. 3, pp. 215-221. doi : 10.4064/fm-131-3-215-221. http://geodesic.mathdoc.fr/articles/10.4064/fm-131-3-215-221/

Cité par Sources :