A recursion-theoretic characterization of instances of $ΒΣ_n$ provable in $П_{n+1}(N)$
Fundamenta Mathematicae, Tome 129 (1988) no. 3, pp. 231-236.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-129-3-231-236

Zofia Adamowicz 1

1
@article{10_4064_fm_129_3_231_236,
     author = {Zofia Adamowicz},
     title = {A recursion-theoretic characterization of instances of $B\ensuremath{\Sigma}_n$ provable in ${\CYRP}_{n+1}(N)$},
     journal = {Fundamenta Mathematicae},
     pages = {231--236},
     publisher = {mathdoc},
     volume = {129},
     number = {3},
     year = {1988},
     doi = {10.4064/fm-129-3-231-236},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-129-3-231-236/}
}
TY  - JOUR
AU  - Zofia Adamowicz
TI  - A recursion-theoretic characterization of instances of $ΒΣ_n$ provable in $П_{n+1}(N)$
JO  - Fundamenta Mathematicae
PY  - 1988
SP  - 231
EP  - 236
VL  - 129
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-129-3-231-236/
DO  - 10.4064/fm-129-3-231-236
LA  - en
ID  - 10_4064_fm_129_3_231_236
ER  - 
%0 Journal Article
%A Zofia Adamowicz
%T A recursion-theoretic characterization of instances of $ΒΣ_n$ provable in $П_{n+1}(N)$
%J Fundamenta Mathematicae
%D 1988
%P 231-236
%V 129
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-129-3-231-236/
%R 10.4064/fm-129-3-231-236
%G en
%F 10_4064_fm_129_3_231_236
Zofia Adamowicz. A recursion-theoretic characterization of instances of $ΒΣ_n$ provable in $П_{n+1}(N)$. Fundamenta Mathematicae, Tome 129 (1988) no. 3, pp. 231-236. doi : 10.4064/fm-129-3-231-236. http://geodesic.mathdoc.fr/articles/10.4064/fm-129-3-231-236/

Cité par Sources :