On the class of all spaces of weight not greater than ω_1 whose Cartesian product with every Lindelöf space is Lindelöf
Fundamenta Mathematicae, Tome 129 (1988) no. 2, pp. 133-140.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-129-2-133-140

K. Alster 1

1
@article{10_4064_fm_129_2_133_140,
     author = {K. Alster},
     title = {On the class of all spaces of weight not greater than \ensuremath{\omega}_1 whose {Cartesian} product with every {Lindel\"of} space is {Lindel\"of}},
     journal = {Fundamenta Mathematicae},
     pages = {133--140},
     publisher = {mathdoc},
     volume = {129},
     number = {2},
     year = {1988},
     doi = {10.4064/fm-129-2-133-140},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-129-2-133-140/}
}
TY  - JOUR
AU  - K. Alster
TI  - On the class of all spaces of weight not greater than ω_1 whose Cartesian product with every Lindelöf space is Lindelöf
JO  - Fundamenta Mathematicae
PY  - 1988
SP  - 133
EP  - 140
VL  - 129
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-129-2-133-140/
DO  - 10.4064/fm-129-2-133-140
LA  - en
ID  - 10_4064_fm_129_2_133_140
ER  - 
%0 Journal Article
%A K. Alster
%T On the class of all spaces of weight not greater than ω_1 whose Cartesian product with every Lindelöf space is Lindelöf
%J Fundamenta Mathematicae
%D 1988
%P 133-140
%V 129
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-129-2-133-140/
%R 10.4064/fm-129-2-133-140
%G en
%F 10_4064_fm_129_2_133_140
K. Alster. On the class of all spaces of weight not greater than ω_1 whose Cartesian product with every Lindelöf space is Lindelöf. Fundamenta Mathematicae, Tome 129 (1988) no. 2, pp. 133-140. doi : 10.4064/fm-129-2-133-140. http://geodesic.mathdoc.fr/articles/10.4064/fm-129-2-133-140/

Cité par Sources :