Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_129_2_133_140, author = {K. Alster}, title = {On the class of all spaces of weight not greater than \ensuremath{\omega}_1 whose {Cartesian} product with every {Lindel\"of} space is {Lindel\"of}}, journal = {Fundamenta Mathematicae}, pages = {133--140}, publisher = {mathdoc}, volume = {129}, number = {2}, year = {1988}, doi = {10.4064/fm-129-2-133-140}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-129-2-133-140/} }
TY - JOUR AU - K. Alster TI - On the class of all spaces of weight not greater than ω_1 whose Cartesian product with every Lindelöf space is Lindelöf JO - Fundamenta Mathematicae PY - 1988 SP - 133 EP - 140 VL - 129 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-129-2-133-140/ DO - 10.4064/fm-129-2-133-140 LA - en ID - 10_4064_fm_129_2_133_140 ER -
%0 Journal Article %A K. Alster %T On the class of all spaces of weight not greater than ω_1 whose Cartesian product with every Lindelöf space is Lindelöf %J Fundamenta Mathematicae %D 1988 %P 133-140 %V 129 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-129-2-133-140/ %R 10.4064/fm-129-2-133-140 %G en %F 10_4064_fm_129_2_133_140
K. Alster. On the class of all spaces of weight not greater than ω_1 whose Cartesian product with every Lindelöf space is Lindelöf. Fundamenta Mathematicae, Tome 129 (1988) no. 2, pp. 133-140. doi : 10.4064/fm-129-2-133-140. http://geodesic.mathdoc.fr/articles/10.4064/fm-129-2-133-140/
Cité par Sources :