A uniquely homogeneous space need not be a topological group
Fundamenta Mathematicae, Tome 122 (1984) no. 3, pp. 255-264.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-122-3-255-264

Jan van Mill 1

1
@article{10_4064_fm_122_3_255_264,
     author = {Jan van Mill},
     title = {A uniquely homogeneous space need not be a topological group},
     journal = {Fundamenta Mathematicae},
     pages = {255--264},
     publisher = {mathdoc},
     volume = {122},
     number = {3},
     year = {1984},
     doi = {10.4064/fm-122-3-255-264},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-122-3-255-264/}
}
TY  - JOUR
AU  - Jan van Mill
TI  - A uniquely homogeneous space need not be a topological group
JO  - Fundamenta Mathematicae
PY  - 1984
SP  - 255
EP  - 264
VL  - 122
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-122-3-255-264/
DO  - 10.4064/fm-122-3-255-264
LA  - en
ID  - 10_4064_fm_122_3_255_264
ER  - 
%0 Journal Article
%A Jan van Mill
%T A uniquely homogeneous space need not be a topological group
%J Fundamenta Mathematicae
%D 1984
%P 255-264
%V 122
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-122-3-255-264/
%R 10.4064/fm-122-3-255-264
%G en
%F 10_4064_fm_122_3_255_264
Jan van Mill. A uniquely homogeneous space need not be a topological group. Fundamenta Mathematicae, Tome 122 (1984) no. 3, pp. 255-264. doi : 10.4064/fm-122-3-255-264. http://geodesic.mathdoc.fr/articles/10.4064/fm-122-3-255-264/

Cité par Sources :