A uniquely homogeneous space need not be a topological group
Fundamenta Mathematicae, Tome 122 (1984) no. 3, pp. 255-264
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_122_3_255_264,
author = {Jan van Mill},
title = {A uniquely homogeneous space need not be a topological group},
journal = {Fundamenta Mathematicae},
pages = {255--264},
publisher = {mathdoc},
volume = {122},
number = {3},
year = {1984},
doi = {10.4064/fm-122-3-255-264},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-122-3-255-264/}
}
TY - JOUR AU - Jan van Mill TI - A uniquely homogeneous space need not be a topological group JO - Fundamenta Mathematicae PY - 1984 SP - 255 EP - 264 VL - 122 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-122-3-255-264/ DO - 10.4064/fm-122-3-255-264 LA - en ID - 10_4064_fm_122_3_255_264 ER -
Jan van Mill. A uniquely homogeneous space need not be a topological group. Fundamenta Mathematicae, Tome 122 (1984) no. 3, pp. 255-264. doi: 10.4064/fm-122-3-255-264
Cité par Sources :