Products of hereditarily indecomposable continua are 2-connected
Fundamenta Mathematicae, Tome 119 (1983) no. 3, pp. 217-226
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_119_3_217_226,
author = {Charles Hagopian},
title = {Products of hereditarily indecomposable continua are 2-connected},
journal = {Fundamenta Mathematicae},
pages = {217--226},
publisher = {mathdoc},
volume = {119},
number = {3},
year = {1983},
doi = {10.4064/fm-119-3-217-226},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-119-3-217-226/}
}
TY - JOUR AU - Charles Hagopian TI - Products of hereditarily indecomposable continua are 2-connected JO - Fundamenta Mathematicae PY - 1983 SP - 217 EP - 226 VL - 119 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-119-3-217-226/ DO - 10.4064/fm-119-3-217-226 LA - en ID - 10_4064_fm_119_3_217_226 ER -
%0 Journal Article %A Charles Hagopian %T Products of hereditarily indecomposable continua are 2-connected %J Fundamenta Mathematicae %D 1983 %P 217-226 %V 119 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-119-3-217-226/ %R 10.4064/fm-119-3-217-226 %G en %F 10_4064_fm_119_3_217_226
Charles Hagopian. Products of hereditarily indecomposable continua are 2-connected. Fundamenta Mathematicae, Tome 119 (1983) no. 3, pp. 217-226. doi: 10.4064/fm-119-3-217-226
Cité par Sources :